
Inducing Structure in Reward Learning
by Learning Features

Journal Title
XX(X):1–24
©The Author(s) 2022
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Andreea Bobu1, Marius Wiggert1, Claire Tomlin1, and Anca D. Dragan1

Abstract
Reward learning enables robots to learn adaptable behaviors from human input. Traditional methods model the reward as
a linear function of hand-crafted features, but that requires specifying all the relevant features a priori, which is impossible
for real-world tasks. To get around this issue, recent deep Inverse Reinforcement Learning (IRL) methods learn rewards
directly from the raw state but this is challenging because the robot has to implicitly learn the features that are important
and how to combine them, simultaneously. Instead, we propose a divide and conquer approach: focus human input
specifically on learning the features separately, and only then learn how to combine them into a reward. We introduce a
novel type of human input for teaching features and an algorithm that utilizes it to learn complex features from the raw
state space. The robot can then learn how to combine them into a reward using demonstrations, corrections, or other
reward learning frameworks. We demonstrate our method in settings where all features have to be learned from scratch,
as well as where some of the features are known. By first focusing human input specifically on the feature(s), our method
decreases sample complexity and improves generalization of the learned reward over a deep IRL baseline. We show this
in experiments with a physical 7DOF robot manipulator, as well as in a user study conducted in a simulated environment.

Keywords
learning from humans, inverse reinforcement learning, feature learning

1 Introduction

Whether it’s semi-autonomous driving (Sadigh et al. 2016),
recommender systems (Ziebart et al. 2008), or household
robots working in close proximity with people (Jain et al.
2015), reward learning can greatly benefit autonomous agents
to generate behaviors that adapt to new situations or human
preferences. Under this framework, the robot uses the person’s
input to learn a reward function that describes how they prefer
the task to be performed. For instance, in the scenario in Fig.
1, the human wants the robot to keep the cup away from the
laptop to prevent spilling liquid over it; she may communicate
this preference to the robot by providing a demonstration of
the task or even by directly intervening during the robot’s task
execution to correct it. After learning the reward function, the
robot can then optimize it to produce behaviors that better
resemble what the person wants.

In order to correctly interpret and efficiently learn from
human input, traditional methods resorted to structuring the
reward as a (linear) function of carefully hand-engineered
features – important aspects of the task (Ziebart et al.
2008; Abbeel and Ng 2004; Jain et al. 2015; Bajcsy et al.
2017). Unfortunately, selecting the right space of features is
notoriously challenging, even for expert system designers:
knowing and specifying a priori an exhaustive set of all the
features that might be relevant for the reward is impossible for
most real-world tasks. To bypass this feature specification
problem, state-of-the-art deep IRL methods (Wulfmeier
et al. 2016; Finn et al. 2016; Brown et al. 2020) learn
rewards defined directly on the high-dimensional raw state (or
observation) space, thereby implicitly constructing features
automatically from task demonstrations.

In doing so, however, these approaches sacrifice the sample
efficiency and generalizability that a well-specified feature
set offers. While using an expressive function approximator
to extract features and learn their reward combination at once
seems advantageous, many such functions can induce policies
that explain the demonstrations. Hence, to disambiguate
between all these candidate functions, the robot requires a
very large amount of (laborious to collect) data, and this data
needs to be diverse enough to identify the true reward. For
example, the human in the household robot setting in Fig. 1
might want to demonstrate keeping the cup away from the
laptop, but from a single demonstration the robot could find
many other explanations for the person’s behavior: perhaps
they always happened to keep the cup upright or they really
like curved trajectories in general.

The underlying problem here is that demonstrations – or
task-specific input more broadly – are meant to teach the robot
about the reward and not about the features per se, so these
function approximators struggle to capture the right feature
structure for the reward. In this work, we argue that the
robot does not have to learn everything at once; instead, it can
divide-and-conquer the reward learning problem and focus on
explicitly learning the features separately from learning how
to combine them into the reward. In our earlier example, if the

1University of California, Berkeley

Corresponding author:
Andreea Bobu, Department of Electrical Engineering and Computer
Science, University of California Berkeley, 2121 Berkeley Way, Berkeley,
CA 94709
Email: abobu@berkeley.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

1

\ShL(V) 1

\ShL(V)

! ɸ!(!)

O
nl
in
e

O
ffl
in
e

!! "

!! "

Learn Feature(s) Learn Rewards

Demonstrations

Corrections

SettingFeature Learning

Figure 1. (Left) The person teaches the robot the concept of horizontal distance from the laptop by providing a few feature traces.
(Right-Top) In the online reward learning from corrections setting, once the robot detects that its feature set is incomplete, it queries
the human for feature traces that teach it the missing feature and adapts the reward to account for it. (Right-Bottom) In the offline
reward learning from demonstrations setting, the person has to teach the robot each feature separately one at a time using feature
traces, and only then teach their combined reward.

robot were taught about the concept of distances to laptops
separately, it would be able to quickly tell what the person
wants from a single demonstration.

We make the following contributions:
Learning features from a novel type of human input. We
present a method for learning complex non-linear features
separately from the reward (Sec. 4). We introduce a new type
of human input specifically designed to teach features, which
we call feature traces – partial trajectories that describe the
monotonic evolution of the value of the feature to be learned.
To provide a feature trace, the person guides the robot from
states where the feature is highly expressed to states where it
is not, in a monotonic fashion. Looking at Fig. 1 (Left), the
person teaches the robot to avoid the laptop by giving a few
feature traces: she starts with the arm above the laptop and
moves it away until comfortable with the distance from the
object. We present an algorithm that harvests the structure
inherent to feature traces and uses it to efficiently learn a
feature relevant for the reward: in our example, the horizontal
distance from the laptop. In experiments on a 7-DoF robot
arm, we find that our method can learn high quality features
closely resembling the ground truth (Sec. 6.1).
Demonstrating our feature learning method in a user
study on a simulated 7-DoF robot arm. In a user study
with the JACO2 (Kinova) robotic arm, we show that non-
expert users can use our approach for learning features (Sec.
6.2). The participants were able to provide feature traces to
teach good features, and found our teaching protocol intuitive.
Unfortunately, due to the current pandemic, we conducted the
study online in a simulated environment; despite the inevitable
degradation in input quality that this entails, the users were
still able to teach features that induced informative bias.
Analyzing generalization and sample complexity benefits
of learning features for rewards. We show how our method,
which we call Feature Expansive Reward Learning (FERL)
because it expands the feature set one by one, can improve
reward learning sample complexity and generalization. First,
we look at an easier online reward learning setting like the
one in Fig. 1 (Right-Top) where the robot knows part of the
feature set from the get-go, but the person’s preference also

depends on other features not in the set (Sec. 5.2). We show
that, by learning the missing feature, the robot obtains a more
generalizable reward than if it had trained a deep IRL network
directly from the raw state and the known set (Sec. 7). We
then consider the more challenging offline reward learning
case in Fig. 1 (Right-Bottom) where the person teaches the
reward from scratch, one feature at a time (Sec. 5.1). We find
that the robot outperforms the baseline most of the time, with
less clear results when the learned features are noisily taught
by novice users in simulation (Sec 8).

We note that this work is an extension of Bobu et al.
(2021), which was published at the International Conference
on Human Robot Interaction. We build on this work by
formalizing a general framework for feature-based reward
learning, and instantiating it in a new offline learning setting
where the person can teach each feature one by one before
combining them into a reward. Not only is this offline setting
more commonly encountered in reward learning, but it also
showcases that our approach can be applied more generally
to preference learning from different kinds of human input.

Overall, this work provides evidence that taking a divide-
and-conquer approach focusing on learning important features
separately before learning the reward improves sample
complexity in reward learning. Although showcased in
manipulation, our method can be used in any robot learning
scenarios where feature learning is beneficial: in collaborative
manufacturing users might care about the rotation of the
object handed over, or in autonomous driving passengers
may care about how fast to drive through curves.

2 Related Work
Programming robot behavior through human input is a well-
established paradigm. In this paradigm, the robot receives
human input and aims to infer a policy or reward function that
captures the behavior the human wants the robot to express.
In imitation learning, the robot directly learns a policy that
imitates demonstrations given by the human (Osa et al. 2018).
The policy learns a correlation between situations and actions
but not why a specific behavior is desirable. Because of that,
imitation learning only works in the training regime whereas

Prepared using sagej.cls

Bobu et. al. 3

optimizing a learned reward, which captures why a behavior
is desirable, can generalize to unseen situations (Abbeel and
Ng 2004).

In the IRL framework the robot receives demonstrations
through teleoperation (Javdani et al. 2018; Abbeel and Ng
2004) or kinesthetic teaching (Argall et al. 2009) and learns a
reward under which these demonstrations are optimal (Russell
and Norvig 2002; Abbeel and Ng 2004). Recent research
goes beyond demonstrations, utilizing other types of human
input for reward learning such as corrections (Jain et al. 2015;
Bajcsy et al. 2017), comparisons (Christiano et al. 2017) and
rankings (Brown et al. 2019), examples of what constitutes
a goal (Fu et al. 2018b), or even specified proxy objectives
(Hadfield-Menell et al. 2017). Depending on the interaction
setting, the human input can be given all-at-once, iteratively,
or on specific requests of the robot in an active learning setting
(Lopes et al. 2009; Brown et al. 2018; Sadigh et al. 2016).

All these methods require less human input if a
parsimonious representation of the world, which summarizes
raw state information in the form of relevant features, is
available. This is because finite feature sets significantly
reduce the space of possible functions which according to
statistical learning theory reduces the information complexity
of the learning problem (Vapnik 2013). In the following
we discuss the the role of feature representations in reward
learning and methods for learning features.

2.1 Feature Representations in Reward
Learning

Traditional reward learning methods rely on a set of carefully
hand-crafted features that capture aspects of the environment
a person may care about. These are selected by the system
designer prior to the task (Ziebart et al. 2008; Abbeel and
Ng 2004; Jain et al. 2015; Hadfield-Menell et al. 2017;
Bajcsy et al. 2017). If chosen well, this feature set introduces
an inductive bias that enables the algorithms to find a
good estimate of the human’s preferences with limited
input. Unfortunately, selecting such a set in the first place
is notoriously challenging, even for experts like system
designers. For one, defining a good feature function can
be a time consuming trial-and-error process, especially if
the feature is meant to capture a complex aspect of the
task (Wulfmeier et al. 2016). Moreover, the chosen feature
space may not be expressive enough to represent everything
that a person might want (and is giving input about) (Bobu
et al. 2020; Haug et al. 2018). When this is the case, the system
may misinterpret human guidance, perform unexpected or
undesired behavior, and degrade in overall performance
(Amodei and Clark 2016; Russell and Norvig 2002; Haug
et al. 2018).

To tackle these challenges that come with hand-designing
a feature set, state-of-the-art deep IRL methods use the
raw state space directly and shift the burden of extracting
behavior-relevant aspects of the environment onto the function
approximator (Finn et al. 2016; Wulfmeier et al. 2016).
The objective of IRL methods is to learn a reward which
induces behavior that matches the state expectation of the
demonstrations. The disadvantage of such approaches is that
they require large amounts of highly diverse data to learn
a reward function which generalizes across the state space.

This is because with expressive function approximators there
exists a large set of functions that could explain the human
input, i.e. many reward functions induce policies that match
the demonstrations’ state expectation. The higher dimensional
the state, the more human input is needed to disambiguate
between those functions sufficiently to find a reward function
which accurately captures human preferences and thereby
generalizes to states not seen during training and not just
replicates the demonstrations’ state expectations. Thus, when
venturing sufficiently far away from the demonstrations the
learned reward in IRL does not generalize which can lead to
unintended behavior (Reddy et al. 2020b; Fu et al. 2018a).

It has been shown that providing linear feature functions
as human input can reduce the risk of unintended behavior
(Haug et al. 2018). In our work we argue that generalization
with limited input can be achieved without requiring hand-
crafted features if the robot explicitly learns features, instead
of attempting to learn them implicitly from demonstrations.

2.2 Learning Features
In IRL researchers have explored the direction of inferring a
set of relevant features directly from task demonstrations. This
can take the form of joint Bayesian inference on both reward
and feature parameters (Choi and Kim 2013) or projecting the
raw state space to lower dimensions via PCA on demonstrated
trajectories (Vernaza and Bagnell 2012). There are also
methods that add features iteratively to learn a non-linear
reward, such as Levine et al. (2010), which constructs logical
conjunctions of primitive integer features, and Ratliff et al.
(2007), which trains regression trees to distinguish expert
from non-expert trajectories in a base feature space. Levine
et al. (2010) performs well in discrete-state MDPs, but is not
suitable for continuous state spaces, does not operate on raw
states but rather a hand-engineered set of integer component
features, and requires the reward structure to be expressible as
logical conjunctions. Meanwhile, Ratliff et al. (2007) allows
for larger state spaces and arbitrary continuous rewards, but
still relies on engineering a relevant set of base features and
severely underperforms in the case of non-expert human input
when compared to more recent IRL techniques (Levine et al.
2011; Wulfmeier et al. 2016). Because of these shortcomings,
IRL researchers have opted recently for either completely
hand-specifying the features or using deep IRL for extracting
them automatically from the raw continuous state space with
non-expert demonstrations (Fu et al. 2018a; Finn et al. 2016).

Rather than relying on demonstrations for everything, we
propose to first learn complex non-linear features leveraging
explicit human input about relevant aspects of the task (Sec.
4). Based on these features, a reward can be inferred with
minimal input (Sec. 5). Our results show that adding structure
in such a targeted way can enhance both the generalization of
the learned reward and data-efficiency of the method.

3 Problem Formulation
We consider a robot R operating in the presence of a human
H from whom it is trying to learn to perform a task, ultimately
seeking to enable autonomous execution. In the most general
setting, both H and R are able to affect the evolution of the
continuous state s ∈ Rd (i.e. robot joint poses or object poses)
over time through their respective continuous actions aH and

Prepared using sagej.cls

4 Journal Title XX(X)

aR via a dynamics function f :

st+1 = f(st, atH , a
t
R) , (1)

with aH ∈ AH and aR ∈ AR, andAH and AR compact sets.
Thus, when executing a task, the robot follows a trajectory
τ = [s0, a0

H , a
0
R, s

1, a1
H , a

1
R, . . . , s

T , aTH , a
T
R].

We assume that the human has some consistent internal
preference ordering between different trajectories τ , which
affects the actions aH that they choose. In principle, these
human preferences could be captured by a reward function
R∗(τ). Unfortunately, the robot does not have access to R∗,
so to learn how to perform the task it must attempt to infer it.
Since R∗ may encode arbitrary preference orderings deeming
the inference problem intractable, we assume that the robot
reasons over a parameterized approximation Rθ induced by
parameters θ ∈ Θ. The robot’s goal is, thus, to estimate the
human’s preferred θ from their actions aH .

Even with this parameterization, the space of possible
reward functions is infinite-dimensional. One way to represent
it using a finite θ is through the means of a finite family of
basis functions Φi, also known as features (Ng and Russell
2000): Rθ(~Φ(τ)), where ~Φ is the set of chosen features Φi.
Consistent with classical utility theories (Von Neumann and
Morgenstern 1945), we may decompose trajectory features Φi
into state features φi and approximate the trajectory’s reward
through a cumulative return over time:

Rθ(τ) = Rθ(~Φ(τ)) =
∑

(s,aH ,aR)∈τ

rθ
(
~φ(s, aH , aR)

)
. (2)

This restriction to a finite set of features ~φ is essentially a
truncation of the infinite collection of basis functions spanning
the full reward function space. Thus, the features we choose to
represent the reward dramatically impact the reward functions
that can be learned altogether. Importantly, this observation
holds regardless of the representation power that rθ has (linear
combination, neural network, etc). Motivated by recovering
a reward function rθ that captures the person’s preferences
as best as possible, we are, thus, interested in the question of
how to choose the feature representation ~φ.

We assume the robot has access to a (possibly empty) initial
set of features ~φ. In Sec. 4, we propose a protocol via which
the robot can learn a novel feature to add to its existing set
by soliciting feature-specific human input. We then describe
classic offline IRL and its adaptation to situations where the
human is teaching the reward from scratch (Sec. 5.1); our
framework enables them to teach one feature at a time before
teaching the reward on top using task demonstrations. Lastly,
we present the online variant, where the robot executes the
task according to a reward function defined on an incomplete
feature set and the human intervenes to correct it (Sec. 5.2);
our method allows them to explicitly focus on teaching the
missing feature(s) and adding them to the set before the
reward is updated.

4 Algorithmic Approach: Feature Learning
We first look at learning individual feature functions. In this
paper, we focus on state features (ignoring actions from the
feature representation), which we define as arbitrary complex
mappings φ(s) : Rd → R+. As such, in regions of the state

space where the feature is highly expressed, this function has
high positive values, whereas for states where the feature is
not expressed, φ is closer to zero.

One natural idea for learning this mapping is treating it as a
regression problem and asking the human for regression labels
(s, φ(s)) directly. Unfortunately, to learn anything useful,
the robot would need a very large set of labels from the
person, which would be too effortful for them to provide.
Even worse, humans are notoriously unreliable at quantifying
their preferences with any degree of precision (Braziunas
and Boutilier 2008), so their labels might result in arbitrarily
noisy regressions. Hence, we need a type of human input that
balances being informative and not placing too much burden
on the human.

4.1 Feature Traces

To teach a non-linear representation of φ with little data, we
introduce feature traces ξ = s0:n, a novel type of human
input defined as a sequence of n states that are monotonically
decreasing in feature value, i.e. φ(si) ≥ φ(sj),∀i < j. This
approach relaxes the need for accurate state labeling, while
simultaneously providing a combinatorial amount of state
comparisons (see Sec. 4.2 for details) from each trace ξ.

When learning a feature, the robot can query the human
for a set Ξ of N traces. The person gives a trace ξ by
simply moving the system from any start state s0 to an end
state sn, noisily ensuring monotonicity. Our method, thus,
only requires an interface for communicating ordered feature
values over states: kinesthetic teaching is useful for household
or small industrial robots, while teleoperation and simulation
interfaces may be better for larger robotic systems.

To illustrate how a human might offer feature traces in
practice, let’s turn to Fig. 1 (Left). Here, the person is teaching
the robot to keep the mug away from the laptop (i.e. not
above). The person starts a trace at s0 by placing the end-
effector directly above the object center, then leads the robot
away from the laptop to sn. Our method works best when
the person tries to be informative, i.e. covers diverse areas of
the space: the traces illustrated move radially in all directions
and start at different heights. While for some features, like
distance from an object, it is easy to be informative, for others,
like slowing down near objects, it might be more difficult. We
explore how easy it is for users to be informative in our study
in Sec. 6.2, with encouraging findings, and discuss alleviating
existing limitations in Sec. 9.

The power of feature traces lies in their inherent structure.
Our algorithm, thus, makes certain assumptions to harvest this
structure for learning. First, we assume that the feature values
of states along the collected traces ξ ∈ Ξ are monotonically
decreasing. Secondly, we assume that by default the human
starts all traces in states s0 with the highest feature value
across the domain, then leads the system to states sn with
the lowest feature value. In some situations, this assumption
might unnecessarily limit the kinds of feature traces the
human can provide. For example, the person might want to
start somewhere where the feature is only “half” expressed
relative to the feature range of the domain. Because of this,
we optionally allow the human to provide relative values

Prepared using sagej.cls

Bobu et. al. 5

v0, vn ∈ [0, 1]* to communicate that the traces start/end at
values that are fractions of the feature range of the domain.

4.2 Learning a Feature Function
To allow for arbitrarily complex non-linear features, we
approximate a feature by a neural network φψ(s) : Rd → R+.
We incorporate the assumptions in the previous section by
training φψ as a discriminative function with respect to the
state ordering in feature traces ξ ∈ Ξ, and also encouraging
the starts s0 and ends sn across all traces to have the same
high and low values, respectively. For ease of exposition, we
present our feature learning technique without the relative
values v0 and vn first, then later describe how to modify the
algorithm to include them.

4.2.1 Monotonicity Along Feature Traces. First, due to
the monotonicity assumption along any feature trace ξk =
(sk0 , s

k
1 , . . . , s

k
n), when training φψ we want to encourage

feature values to decrease monotonically along every trace, i.e.
φψ(ski) ≥ φψ(skj),∀j > i, k. For this purpose, we convert the
set of collected traces ξk ∈ Ξ into a dataset of ordered tuples
(ski , s

k
j) ∈ Tord, where every first element appears earlier in

the trace than the second element (hence its feature value
should be higher). This results in

(
(n+1)

2

)
tuples per trace,

which we can use for training φψ .
We train the discriminative function φψ as a predictor for

whether a state s has a higher feature value than another state
s′, which we represent as a softmax-normalized distribution:

P (φψ(s) > φψ(s′)) = P (s � s′) =
eφψ(s)

eφψ(s) + eφψ(s′)
,

(3)
where we define the shorthand notation s � s′ for φψ(s) >
φψ(s′). We choose ψ to minimize a negative log-likelihood
loss Lord(ψ) operating on the ordered tuples dataset:

Lord(ψ) = −
∑

(s,s′)∈Tord

log(P (s � s′)) (4)

= −
∑

(s,s′)∈Tord

log
eφψ(s)

eφψ(s) + eφψ(s′)
. (5)

Intuitively, this loss spaces out the feature values φψ such
that they decrease monotonically along every trace; however,
this alone does not constrain the traces to have the same start
and end values, respectively.

4.2.2 Start/End Feature Value Equivalence. To encourage
all traces to start and end in the same high and low feature
values, we need an additional loss term encoding φψ(si0) =

φψ(sj0) and φψ(sin) = φψ(sjn) for all ξi, ξj ∈ Ξ. We thus
convert the set of collected traces Ξ into another dataset
Tequiv of equivalence tuples (si0, s

j
0), (sin, s

j
n) ∀ ξi, ξj ∈

Ξ, i 6= j, i > j. This results in 2
(
N
2

)
tuples where the states

of the tuple (s, s′) should have the same feature value, i.e.
φψ(s) = φψ(s′). We denote this relationship as s ∼ s′ to
simplify notation.

When training φψ, the predictor should not be able to
distinguish which state has a higher feature value, hence
P (φψ(s) > φψ(s′)) = 0.5. As such, we introduce a second
loss function Lequiv(ψ) that minimizes the negative log-
likelihood of both s having a higher feature value than s′

and s′ having a higher feature value than s:

Lequiv(ψ) = −
∑

(s,s′)∈Tequiv

log(P (s � s′)) + log(P (s′ � s))

(6)

= −
∑

(s,s′)∈Tequiv

log
eφψ(s)+φψ(s′)

(eφψ(s) + eφψ(s′))2
. (7)

This loss ensures the state space around feature trace starts
and ends have similar feature values, respectively. †

We now have a total dataset T = Tord ∪ Tequiv of |T | =∑N
i=1

(
(ni+1)

2

)
+ 2
(
N
2

)
tuples, which is already significantly

large for a small set of feature traces. We can use it to optimize
a loss L(ψ) that combines the ordered and equivalence losses:

L(ψ) = Lord(ψ) + λLequiv(ψ) , (8)

where λ is a hyperparameter trading off the two loss functions.
Given the loss function in Eq. (8), we can use any automatic

differentiation package to compute its gradients and update
ψ via gradient descent. Note that Lequiv is akin to a binary
cross-entropy loss with a target of 0.5, whereas Lord is similar
to a binary cross-entropy loss with a target of 1. This form of
loss function has been shown to be effective for preference
learning (Christiano et al. 2017; Ibarz et al. 2018). The key
differences here are that our loss is over feature functions
not rewards, and that preferences are state orderings provided
via feature traces not trajectory comparisons. Additionally,
in practice we normalize the feature functions to make their
subsequent reward weights reflect importance relative to one
another. We present the full feature learning algorithm using
feature traces in Alg. 1.

Algorithm 1: Feature Learning via Feature Traces
Input: N number of queries, K iterations.
for i← 1 to N do

Query feature trace ξ as in Sec. 4.1.
Ξ← Ξ ∪ ξ.

end
Convert Ξ to datasets Tord and Tequiv as in Sec. 4.2.
Initialize φψ randomly.
for iteration k ← 1 to K do

Sample tuples batch T̂ord ∈ Tord.
Sample tuples batch T̂equiv ∈ Tequiv .
Estimate L(ψ) using T̂ord, T̂equiv , and Eq. (8).
Update parameter ψ via gradient descent on L(ψ).

end
return normalized φψ

4.2.3 Incorporating Relative Values. So far, we have
assumed that all feature traces have starts and ends of the
same high and low feature value, respectively. The optional
relative values v0, vn can relax this assumption to enable

∗Since specifying decimal fractions is difficult, the person gives percentages
between 0 and 100 instead.
†One could choose other losses to ensure equivalence of start and end values
such as a p-norm ||φψ(s)− φψ(s′)||p. We experimented with p = 2 but it
produced inferior results.

Prepared using sagej.cls

6 Journal Title XX(X)

the human to provide richer traces and teach more complex
feature functions, e.g. where no monotonic path from the
highest to lowest feature value exists. By default, v0 = 1
communicating that the trace starts at the highest feature value
of the domain, and vn = 0 signifying that the trace ends at the
lowest feature value. By allowing v0 and vn to be something
different from their defaults, the person can provide traces
that start at higher feature values or end at lower ones. We
describe how to include these relative values in the feature
training procedure in App. A.1.

5 Algorithmic Approach: Reward Learning
Now that we have a method for learning relevant features, we
discuss how the robot can include this capability in reward
learning frameworks. For exposition, we chose two reward
learning frameworks – learning from demonstrations (offline)
and from corrections (online) – but we stress that features
learned with our method are applicable to any other reward
learning method that admits features (e.g. comparisons, scalar
feedback, state of the world, etc.).

5.1 Offline FERL
We first consider the scenario where the human is attempting
to teach the robot a reward function from scratch, i.e. the robot
starts off with an empty feature set ~φ. For instance, imagine a
system designer trying to engineer the robot’s reward before
deployment, or an end user resetting it and custom designing
the reward for their home. We can think of this as an offline
reward learning setting, where the person provides inputs to
the robot before it starts executing the task. Here, we focus on
learning from demonstrations, although our framework can
be adapted to any other offline reward learning strategy.

In standard learning from demonstrations, deep IRL uses a
set of demonstrations to train a reward function directly from
the raw state, in an end-to-end fashion. Under our divide-
and-conquer framework, we redistribute the human input the
robot asks for: first ask for feature traces ξ focusing explicitly
on learning F features one by one via Alg. 1, and only then
collect a few demonstrations τ ∈ D∗ to learn the reward on
top of them. Alg. 2 summarizes the full procedure.

Algorithm 2: Offline FERL
Input: Demonstration set D∗, F number of features,
K iterations, α learning rate.

Initialize empty feature set ~φ = [].
for f ← 1 to F do

Learn feature φf using Alg. 1.
~φ← (~φ, φf).

end
Initialize θ randomly.
for iteration k ← 1 to K do

Generate samples Dθ using current reward Rθ.
Estimate gradient∇L using D∗, Dθ in Eq. (15).
Update parameter θ using gradient∇L in Eq. (16).

end
return optimized reward parameters θ

5.1.1 Creating the Feature Set. Since the robot starts off
with an empty feature set ~φ, the person has to teach it every

relevant feature one at a time. To do so, they follow the
procedure in Alg. 1, that is they collect a set of feature traces
ξ ∈ Ξ for the current feature, then use them to train φψ. The
person can add this new feature to the robot’s existing set:

~φ← (~φ, φψ) , (9)

and repeat the procedure for as many features F as they want.
After being equipped with a new set of features taught

by the human, the robot can undergo standard learning from
demonstration procedures to recover the person’s preferences.
We now review Maximum Entropy IRL (Ziebart et al. 2008)
for completion of the offline reward learning exposition.

5.1.2 Offline Reward Learning. To teach the robot the
desired reward function Rθ, the person collects a set of
demonstrations τ ∈ D∗ for how to perform the task by
directly controlling the state s through their input aH . During
a demonstration, the robot is put in gravity compensation
mode or teleoperated, to allow the person full control
over the desired trajectory. The robot interprets the set of
demonstrations D∗ as evidence about the human’s preferred
θ parameter, and uses them to estimate it and, thus, to learn
the reward function.

In order to reason about the human’s preferences, the
robot needs to be equipped with a model P (τ | θ) for
how those preferences affect their choice of demonstrations.
For example, if the human were assumed to act optimally,
the model would place all the probability on the set of
trajectories that perfectly optimize the reward Rθ. However,
since humans are not perfect, we relax this assumption and
model them as being noisily-optimal, choosing trajectories
that are approximately aligned with their preferences. We
follow the Boltzmann noisily-rational decision model:

P (τ | θ, β) =
eβRθ(τ)∫

τ̄
eβRθ(τ̄)dτ̄

, (10)

where the human picks trajectories proportional to their
exponentiated reward (Baker et al. 2007; Von Neumann and
Morgenstern 1945). Here, β ∈ [0,∞) controls how much
the robot expects to observe human input consistent with its
reward model. For now, we use the Maximum Entropy IRL
(Ziebart et al. 2008) version of this observation model where
β is fixed to 1, so for notation simplicity we refer to this model
as P (τ | θ). Later in Sec. 5.2, we will allow β to vary and
make use of it in the online version of our framework.

In maximum entropy IRL, to recover the θ parameter we
maximize the log-likelihood L(θ) of the observed data under
the above model (Jaynes 1957). To see how, let’s start by
writing down the log-likelihood formula:

L(θ) = log
∏
τ∈D∗

P (τ | θ) =
∑
τ∈D∗

log
eRθ(τ)∫

τ̄
eRθ(τ̄)dτ̄

=
∑
τ∈D∗

Rθ(τ)− |D∗| log

∫
τ̄

eRθ(τ̄)dτ̄ .

(11)

Computing the integral over trajectories is intractable
in real-world problems, so sample-based approaches to
maximum entropy IRL estimate it with samples τ ∈ D′ drawn
from a background distribution q(τ):

L(θ) ≈
∑
τ∈D∗

Rθ(τ)− |D∗| log
1

|D′|
∑
τ̄∈D′

eRθ(τ̄)

q(τ̄)
. (12)

Prepared using sagej.cls

Bobu et. al. 7

The distribution q(τ) is chosen often times to be uniform;
instead, we follow Finn et al. (2016) and generate samples in
those regions of the trajectory space that are good according to
the current estimate of the reward function, i.e. q(τ) ∝ eRθ(τ).
We denote τ ∈ Dθ such a set sampled under θ.

We may now find θ by maximizing the log-likelihood L(θ)
using gradient-based optimization on the above objective. The
gradient then takes the following form:

∇L =
1

|D∗|
∑
τ∈D∗

∇Rθ(τ)− 1

|Dθ|
∑
τ̄∈Dθ

∇Rθ(τ̄) . (13)

At this point, a standard deep IRL baseline could use any
automatic differentiation package to compute the gradient
and update the reward parameters directly from the raw
trajectory state. Instead, consistent with prior work on reward
learning with feature sets, we represent the reward as a linear
combination of the learned features ~φ:

Rθ(τ) = θT ~Φ(τ) =
∑

(s,aH ,aR)∈τ

θT ~φ(s) . (14)

Note that the linear reward assumption is not necessary for
our algorithm to work. While in theory the reward could be
modeled as non-linear, our divide-and-conquer approach is
motivated by keeping the reward parameter space small while
still effectively capturing the person’s preferences.

For the linear case, the gradient becomes the difference
between the observed demonstration feature values and the
expected feature values dictated by the sampled trajectories:

∇L =
1

|D∗|
∑
τ∈D∗

~Φ(τ)− 1

|Dθ|
∑
τ̄∈Dθ

~Φ(τ̄) . (15)

Lastly, we compute an estimate θ̂ by iteratively computing
the gradient ∇L and updating the parameters until
convergence:

θ̂′ = θ̂ − α

 1

|D∗|
∑
τ∈D∗

~Φ(τ)− 1

|Dθ|
∑
τ̄∈Dθ

~Φ(τ̄)

 ,

(16)
where α is the learning rate chosen appropriately. The final
reward learning procedure, thus, consists of K iterations of
generating samples Dθ under the current reward, using them
to estimate the gradient in Eq. 15, and updating the parameter
θ via gradient descent with Eq. 16.

5.2 Online FERL
In Sec. 5.1, we saw that our method allows the person to
specify a reward by sequentially teaching features and adding
them to the robot’s feature set before using demonstrations
to combine them. However, in many situations the system
designer or even the user teaching the features might not
consider all aspects relevant for the task a priori. As such,
we now consider an online reward learning version of our
previous scenario, where the person provides inputs to the
robot during the task execution and its feature space may or
may not be able to correctly interpret them.

We assume the robot has access to an initial feature set ~φ,
and is tracking a trajectory τ optimizing its current estimate
of the reward function Rθ in Eq. (14). If the robot is not

executing the task according to the person’s preferences,
the human can intervene with input aH . For instance, aH
might be an external torque that the person applies to change
the robot’s current configuration. Or, they might stop the
robot and kinesthetically demonstrate the task, resulting in
a trajectory. Building on prior work, we assume the robot
can evaluate whether its existing feature space can explain
the human input (Sec. 5.2.2). If it can, the robot directly
updates its reward function parameters θ, also in line with
prior work Bajcsy et al. (2017); Ratliff et al. (2006) (Sec.
5.2.1). If it can not, the human can teach the robot a new
feature‡ φψ just like in Sec. 5.1 and augment its feature
set ~φ← (~φ, φψ). The robot can then go back to the original
human input aH that previously could not be explained by
the old features and use it to update its estimate of the reward
parameters θ. Algorithm 3 summarizes the full procedure.

Algorithm 3: Online FERL

Input: Features ~φ = [φ1, . . . , φf], initial parameters θ,
confidence threshold ε.

Plan initial trajectory τ by optimizing Rθ.
while executing τ do

if aH then
Estimate confidence β̂ from aH using Eq. (19).
if β̂ < ε then

Learn feature φnew using Alg. 1.
~φ← (~φ, φnew), θ ← (θ, 0.0).

end
Get induced trajectory τH from Eq. (17).
Update parameter θ using τH in Eq. (18).
Replan trajectory τ by optimizing new Rθ.

end
end

5.2.1 Online Reward Update. Whether it needs to learn a
new feature φψ or not, the robot has to then use the human
input aH to update its estimate of the reward parameters θ.
Here, any prior work on online reward learning from user
input is applicable, but we highlight one example to complete
the exposition.

For instance, take the setting where the human’s input aH
was an external torque, applied as the robot was tracking a
trajectory τ that was optimal under its current reward Rθ.
Prior work Bajcsy et al. (2017) has modeled this as inducing
a deformed trajectory τH , by propagating the change in
configuration to the rest of the trajectory:

τH = τ + µA−1ãH , (17)

where µ > 0 scales the magnitude of the deformation, A
defines a norm on the Hilbert space of trajectories§ and
dictates the deformation shape (Dragan et al. 2015), and ãH
is aH at the interaction time and 0 otherwise.

If we think of τH as the human observation and of τ as the
expected behavior according to the current reward function

‡Because feature learning was triggered by an intervention, it is fair to assume
that the human knows what aspect of the task they were trying to correct.
§We used a norm A based on acceleration, consistent with Bajcsy et al.
(2017), but other norm choices are possible as well.

Prepared using sagej.cls

8 Journal Title XX(X)

Table Feature Traces & Projected Function

0

1

D
is

ta
nc

e
to

 ta
bl

e
�

����

/DSWRS�)HDWXUH�7UDFHV�	�3URMHFWHG�)XQFWLRQ

Laptop

1
\ShL(V!"($)

0

Figure 2. Visualization of the experimental setup, learned feature values φψ(s), and training feature traces ξ for table (up) and laptop
(down). We display the feature values φψ(s) for states s sampled from the reachable set of the 7-DoF arm, as well as their projections
onto the yz and xy planes.

(Bajcsy et al. 2017), we arrive at a natural alternation of the
update rule in Eq. (16):

θ̂′ = θ̂ − α
(
~Φ(τH)− ~Φ(τ)

)
. (18)

Intuitively, the robot updates its estimate θ̂ in the direction
of the feature change induced by the human’s correction aH
from τ to τH .

If instead, the human intervened with a full demonstration,
work on online learning from demonstrations (Sec. 3.2 in
Ratliff et al. (2006)) has derived the same update with τH now
being the human demonstration. In our implementation, we
use corrections and follow Bajcsy et al. (2018), which shows
that people more easily correct one feature at a time, and only
update the θ index corresponding to the feature that changes
the most (after feature learning this is the newly learned
feature). After the update, the robot replans its trajectory
using the new reward.

5.2.2 Confidence Estimation. The robot can learn a new
feature from the person because we assumed it has the
capacity to detect that a feature is missing in the first place. We
alluded earlier in Sec. 5.1 how this ability might be enabled
by manipulating the β parameter in the observation model in
Eq. (10). We now expand on this remark.

In the presented Boltzmann model, β controls how much
the robot expects to observe human input consistent with
its reward structure, and, thus, its feature space. A high β
suggests that the input is consistent with the robot’s feature
space, whereas a low β may signal that no reward function
captured by the feature space can explain the input. As such,
inspired by work in Fridovich-Keil et al. (2019); Fisac et al.
(2018); Bobu et al. (2020), instead of keeping β fixed like in
the maximum entropy IRL observation model, we reinterpret
it as a confidence in the robot’s features’ ability to explain
human data.

When the human input aH is a correction, following
Bobu et al. (2020), the robot estimates β̂ by considering
how efficient the human input aH is in achieving the
induced trajectory features ~Φ(τH). Accordingly, β̂ is inversely
proportional to the difference between the actual human input
and the input that would have produced ~Φ(τH) optimally:

β̂ ∝ 1

‖aH‖2 − ‖a∗H‖2
, (19)

where we obtain a∗H by solving the optimization problem
presented in Bobu et al. (2020) Eq. (21).

Intuitively, if the person’s input is close to the optimal
a∗H , then it achieves the induced features ~Φ(τH) efficiently,
resulting in high confidence β̂. If, however, there is a far more
efficient alternative input – the difference between aH and
a∗H is large –, β̂ will be small: the person probably intended
to give input about a feature the robot does not know about.

Alternatively, if the human input aH is a demonstration,
like in the classical IRL presented in Sec. 5.1, also following
Bobu et al. (2020), we may estimate β̂ via a Bayesian
belief update: b′(θ, β) ∝ P (τ | θ, β)b(θ, β). Once again, in
our implementation we used corrections, but the work in
Bobu et al. (2020) shows confidence estimation can easily be
adapted to learning from demonstrations if desired.

To detect a missing feature, the robot simply needs a
confidence threshold ε. If β̂ is above the threshold, the robot
is confident in its feature space, so it updates the reward as
usual; if β̂ < ε, its features are insufficient and the robot asks
the person to be taught a new one.

6 Experiments: Learning Features
Before testing FERL in the two reward learning settings of
interest, we first analyze our method for learning features
in experiments with a robotic manipulator. In Sec. 6.1, we
inspect how well FERL can learn six different features of
varying complexity by using real robot data collected from an
expert – a person familiar with how the algorithm works. We
then conduct an online user study in simulation in Sec. 6.2 to
test whether non-experts – people not familiar with FERL but
taught to use it – can teach the robot good features.

6.1 Expert Users
We have argued that feature traces are useful in teaching the
robot features explicitly. In our first set of experiments, we
look at how good the learned features are, and how their
quality varies with the amount of feature traces provided.

6.1.1 Experimental Design. We conduct our experiments
on a 7-DoF JACO robotic arm. We investigate six features in
the context of personal robotics:

1. table: distance of the End-Effector (EE) to the table (T),
as a z-coordinate difference: EEz − T z (superscript
denotes pose coordinate selection);

2. coffee: coffee cup upright orientation, defined by how
far the EE is from pointing up: 1− EER · [0, 0, 1]
(superscript denotes pose rotation matrix);

Prepared using sagej.cls

Bobu et. al. 9

-1

-0.5

0

0.5

+/- 1

Laptop Test Laptop Location Table

-1 -0.5 0 0.5 1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

0.0

0.5

1.0

-1

-0.5

0

0.5

+/- 1

Proxemics Between Objects Coffee

-1 -0.5 0 0.5 1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

0.5

1.0

0.0

!"#$%

!&

!"#$%

!&

Figure 3. The plots display the ground truth φTrue (top rows) and
learned feature values φψ (bottom rows) over STest, averaged
and projected onto a representative 2D subspace: the xy-plane,
the yz-plane (table), and the xz orientation plane for coffee (the
arrow represents the cup upright).

3. laptop: 0.3 meter xy-plane distance of the EE to a
laptop (L), to avoid passing over the laptop: max{0.3−
‖EExy − Lxy‖2, 0};

4. test laptop location: same as laptop but the test position
differs from the training ones;

5. proxemics: non-symmetric 0.3 meter xy-plane distance
between the EE and the human (H), to keep the EE
away from them, three times as much when moving
in front of them than on their side : max{0.3−√(

EEy−Hy
3

)2
+ (EEx −Hx)2, 0};

6. between objects: 0.2 meter xy-plane distance of the EE
to two objects, O1 and O2 – the feature penalizes being
above either object, and, to a lesser extent, passing in
between the objects as defined by a distance to the imag-
inary line O1O2: max{0.2−min{0.8 ∗ ‖O1O

xy
2 −

EExy‖2, ‖Oxy1 − EExy‖2, ‖O
xy
2 − EExy‖2}, 0}.

Most features can be taught with the default relative values
vn = 0 and v0 = 1, but between objects requires some traces
with explicit values v0, vn. We approximate all features φψ by
neural networks (2 layers, 64 units each), and train them on
a set of traces Ξ using stochastic gradient descent (see App.
C.1 for training details details).

For each feature, we collected a set F of 20 feature traces
(40 for the complex test laptop location and between objects)
from which we sample subsets Ξ ∈ F for training. We decide
for each feature what an informative and intuitive set of traces
would be, i.e. how to choose the starting states to cover enough
of the space (details in App. B.1). As described in Sec. 4.2,
the human teacher starts at a state where the feature is highly
expressed, e.g. for laptop that is the EE positioned above the
laptop. They then move the EE away until the distance is

2 3 4 5 7 8 9 10
0.0

0.5

1.0

M
SE

no
rm

Table

2 3 4 5 6 7 8 9 10

Laptop

2 3 9 104 5 6 7 8
0.0

0.5

1.0

M
SE

no
rm

6

2 3 9 104 5 6 7 8

Proxemics

0.0

0.5

1.0

M
SE

no
rm

Between ObjectsTest Laptop Location

2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30
Number of Feature TracesNumber of Feature Traces

Coffee

Figure 4. For each feature, we show the MSEnorm mean and
standard error across 10 random seeds with an increasing
number of traces (orange) compared to random (gray).

equal to the desired radius. They do this for a few different
directions and heights to give a diverse dataset.

Our raw state space consists of the 27D xyz positions of
all robot joints and objects in the scene, as well as the rotation
matrix of the EE. We assume known object positions but they
could be obtained from a vision system. It was surprisingly
difficult to train on both positions and orientations due to
spurious correlations in the raw state space, hence we show
results for training only on positions or only on orientations.
This speaks to the need for methods that can handle correlated
input spaces, which we expand on in App. B.3.

Manipulated Variables. We are interested in seeing trends
in how the quality of the learned features changes with more
or less data available. Hence, we manipulate the number of
traces N the learner gets access to.

Dependent Measures. After training a feature φψ, we
measure error compared to the ground truth feature φTrue
that the expert tries to teach, on a test set of states STest.
To form STest, we uniformly sample 10,000 states from the
robot’s reachable set. Importantly, many of these test points
are far from the training traces, probing the generalization
of the learned features φψ. We measure error via the
Mean-Squared-Error (MSE), MSE = 1

|STest|
∑
STest
||φψ(s)−

φTrue(s)||2. To ground the MSE values, we normalize them
with the mean MSE of a randomly initialized untrained feature
function, MSEnorm = MSE

MSErandom
, hence a value of 1.0 is random

performance. For each N , we run 10 experiments sampling
different feature trace sets Ξ from F , and calculate MSEnorm.

Hypotheses.
H1: With enough data, FERL learns good features.
H2: FERL learns increasingly better features with more data.
H3: FERL becomes less input-sensitive with more data.

6.1.2 Qualitative Results. We first inspect the results
qualitatively, for N=10. In Fig. 2 we show the learned table
and laptop features φψ by visualizing the position of the EE
for all 10,000 points in our test set. The color of the points
encodes the learned feature values φψ(s) from low (blue) to
high (yellow): table is highest when the EE is farthest, while

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 5. The pybullet simulator interface used in the user study,
replicating our lab setup with the JACO robot.

laptop peaks when the EE is above the laptop. In Fig. 3, we
illustrate the Ground Truth (GT) feature values φTrue and the
trained features φψ by projecting the test points on 2D sub-
spaces and plotting the average feature value per 2D grid
point. For Euclidean features we used the EE’s xy-plane or
yz-plane (table), and for coffee we project the x-axis basis
vector of the EE after forward kinematic rotations onto the
xz-plane (arrow up represents the cup upright). White pixels
are an artifact of sampling.

We observe that φψ resembles φTrue very well for most
features. Our most complex feature, between objects, does
not recreate the GT as well, although it does learn the general
shape. However, we note in App. D.1 that in smaller raw
input space it is able to learn the fine-grained GT structure.
This implies that spurious correlation in input space is a
problem, hence for complex features more data or active
learning methods to collect informative traces are required.

6.1.3 Quantitative Analysis. Fig. 4 displays the means
and standard errors across 10 seeds for each feature with
increasing amount of data N . To test H1, we look at the
errors with the maximum amount of data. Indeed, FERL
achieves small errors, put in context by the comparison with
the error a random feature incurs (gray line). This is confirmed
by an ANOVA with random vs. FERL as a factor and the
feature ID as a covariate, finding a significant main effect
(F (1, 113) = 372.0123, p < .0001). In line with H2, most
features have decreasing error with increasing data. Indeed, an
ANOVA withN as a factor and feature ID as a covariate found
a significant main effect (F (8, 526) = 21.1407, p < .0001).
Lastly, supporting H3, we see that the standard error on the
mean decreases when FERL gets more data. To test this, we
ran an ANOVA with the standard error as the dependent
measure and N as a factor, finding a significant main effect
(F (8, 45) = 3.098, p = .0072).

6.1.4 Summary. The qualitative and quantitative results
support our hypotheses and suggest that our method requires
few traces to reliably learn features φψ that generalize well
to states not seen during training. We also find that the more
complex a feature, the more traces are needed for good
performance: while table and laptop perform well with just
N=4, some other features, like between objects, require more
traces. Active learning approaches that disentangle the learned

75% 50% 25% 0% 25% 50% 75% 100%

Q9: for the table feature.
Q10: for the laptop feature.
Q11: for the proxemics feature.

The robot correctly learned what I wanted

Q8: It was frustrating, stressful, or
irritating to teach the robot the features.

Q7: It was easy to teach the robot
the feature.

Q6: Teaching the feature was quick.

Q5: It was mentally demanding to
teach the robot the feature.

Q4: I was successful at teaching the
robot the feature I wanted.

Q3: I believe the robot has learned the
correct feature from the traces I provided.

Q2: I understand how the traces
influence what feature the robot learns.

Q1: It was easy to think of what traces
to give to the robot to teach the feature.

strongly disagree strongly agreeAfter Visualization

p<.0001*

p<.0001*

p<.001*

p<.0001*

p=.0437

p<.005
p=.0688

p<.005

p=.5997

p=.1080
p=.6148

p=.638

p=.0544

p=.0265
p<.01

p=.0152

p<.0001*

p<.005

p<.001*

Figure 6. Questions, answer distributions, and p-values (2-sided
t-test against the middle score 4) from the user study. The
p-values in orange are significant after adjusted for multiple
comparisons using the Bonferroni correction.

function by querying traces at parts of the state space that are
confusing could further reduce the amount of data required.

6.2 User Study
In the previous section, we have demonstrated that experts
can teach the robot good feature functions.We now design a
user study to test how well non-expert users can teach features
with FERL and how easily they can use the FERL protocol.

6.2.1 Experimental Design. Due to COVID, we replicated
our set-up from Fig. 1 (Left) in a pybullet simulator (Coumans
and Bai 2016–2019) in which users can move a 7 DoF-JACO
robotic arm using their cursor. Through the interface in Fig.
5, the users can drag the robot to provide feature traces, and
use the buttons for recording, saving, and discarding them.

The user study is split into two phases: familiarization and
teaching. In the first phase, we introduce the user to the task
context, the simulation interface, and how to provide feature
traces through an instruction video and a manual. Next, we
describe and 3D visualize the familiarization task feature
human (0.3 meter xy-plane distance of the EE to the human
position), after which we ask them to provide 10 feature traces
to teach it. Lastly, we give the users a chance to see what they
did well and learn from their mistakes by showing them a 3D
visualization of their traces and the learned feature. See App.
B.4 for more details on the user training.

In the second phase, we ask users to teach the robot three
features from Sec. 6.1: table, laptop, and proxemics. This
time, we don’t show the learned features until after all three
tasks are complete.

Manipulated Variables. We manipulate the input type with
three levels: Random, Expert, and User. For Random, we
randomly initialize 12 feature functions per task; for Expert,
the authors collected 20 traces per task in the simulator, then
randomly subsampled 12 sets of 10 that lead to features of
similar MSEs to the ones in the physical setup before; for
User, each person provided 10 traces per task.

Prepared using sagej.cls

Bobu et. al. 11

Laptop Table Proxemics0.00

0.05

0.10

0.15

0.20

0.25

M
SE

to
G

T
(φ

tr
ue

)
Random
Expert (Sim)
User (Sim)

Figure 7. MSE to GT for the three features learned from expert
(orange) and user (yellow) traces provided in simulation, and
randomly (gray) initialized feature for comparison.

Dependent Measures. Our objective metric is the learned
feature’s MSE compared to the GT feature on STest, similar
to Sec. 6.1. Additionally, to assess the users’ interaction
experience we administered the subjective 7-point Likert
scale survey from Fig. 6, with some items inspired by NASA-
TLX (Hart and Staveland 1988). After they provide the feature
traces for all 3 tasks, we ask the top eight questions in Fig. 6.
The participants then see the 3D visualizations of their feature
traces and learned features, and we survey all 11 questions as
in Fig. 6 to see if their assessment changed.

Participants. We recruited 12 users (11 male, aged 18-30)
from the campus community to interact with our simulated
JACO robot and provide feature traces for the three tasks. All
users had technical background, so we caution that our results
will speak to FERL’s usability with this population rather
than the general population.

Hypotheses.
H4: FERL learns good features from non-expert user data.
H5: Users find it easy to think of traces to give the robot,
believe they understand how these traces influence the learned
feature, believe they were successful teachers, and find our
teaching protocol intuitive (little mental/physical effort, time,
or stress).

6.2.2 Analysis

Objective. Fig. 7 summarizes the results by showing how
the MSE varies with each of our input types, for each task
feature. Right off the bat, we notice that in line with H4, the
MSEs for the user features are much closer to the expert
level than to random. We ran an ANOVA with input type as a
factor and task as a covariate, finding a significant main effect
(F(2, 103) = 132.7505, p < .0001). We then ran a Tukey
HSD post-hoc, which showed that the MSE for Random
input was significantly higher than both Expert (p < .0001)
and User (p < .0001), and found no significant difference
between Expert and User (p = .0964). While this does not
mean that user features are as good as expert features (we
expect some degradation in performance when going to non-
experts), it shows that they are substantially closer to them
than to random, i.e. the user features maintain a lot of signal
despite this degradation.

Subjective. In Fig. 6, we see the Likert survey scores
before and after the users saw the teaching results. For every
question, we report 2-sided t-tests against the neutral score 4.
These results support H5, although the evidence for finding
the teaching protocol intuitive is weaker, and participants
might have a bias to be positive given they are in a study.
In fact, several participants mentioned in their additional
remarks that they had a good idea of what traces to give, and
the only frustrating part was the GUI interface, which was
necessary because in-person studies are not possible during
the COVID pandemic ("I had a pretty good mental model
for what I wanted to show, but found it frustrating doing
that with a mouse", "I know what it wants, but the interface
makes it difficult to give those exact traces"); performing
the experiment as it was originally intended with the real
robot arm would have potentially alleviated this issue ("With
manual control of the arm it would have been a lot easier.").

Looking before and after the visualization, we find a
trend: seeing the result seems to reinforce people’s belief that
they were effective teachers (Q3, Q4), also noticed in their
comments ("Surprising how well it learned!", "Surprised that
with limited coverage it generalized pretty well."). Also, in
support of H4, we see significant evidence that users thought
the robot learned the correct feature (Q9-Q11).

Lastly, we wanted to know if there was a correlation
between subjective scores and objective performance. We
isolated the “good teachers” – the participants who scored
better than average on all 3 feature tasks in the objective
metric, and compared their subjective scores to the rest of the
teachers. By running a factorial likelihood-ratio test for each
question, we found a significant main effect for good teachers:
they are more certain that the robot has learned a correct
feature even before seeing the results (Q3, p = .001), are more
inclined to think they were successful (Q4, p = .0203), and
find it significantly easier to teach features (Q7, p = .0202).

6.2.3 Summary. Both the objective and subjective results
provide evidence that non-expert users can teach the robot
reasonable features using our FERL protocol. In addition,
participants found our teaching protocol intuitive, suggesting
that feature traces can be useful for teaching features outside
of the system designer’s setting. In the following sections, we
explore whether both expert and non-expert features can be
used to improve reward learning generalization.

7 Experiments: Online FERL

Now that we have tested our method for learning features with
both experts and non-experts, we analyze how the learned
features affect reward learning. In this section, we start with
the easier setting where the robot already has a feature set that
it is using for online reward learning, but the human might
provide input about a missing feature.

7.1 Expert Users
When the robot receives human input that cannot be explained
by its current set of features, we hypothesize that adding
FERL features to it can induce structure in the reward learning
procedure that helps better recover the person’s preferences.
We first test this hypothesis with expert user data.

Prepared using sagej.cls

12 Journal Title XX(X)

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Figure 8. Visual comparison of the ground truth, online FERL,
and ME-IRL rewards for Laptop Missing (top), Table Missing
(middle) and Proxemics Missing (bottom).

7.1.1 Experimental Design. We run experiments on the
same JACO robot arm in three settings in which two features
are known (φcoffee, φknown) and one is unknown. In all tasks,
the true reward is rtrue =(0, 10, 10)(φcoffee, φknown, φunknown)T .
We include φcoffee with zero weight to evaluate if the methods
can learn to ignore irrelevant features. In task 1, φlaptop is
unknown and the known feature is φtable; in task 2, φtable is
unknown and φlaptop is known; and in task 3, φproxemics is
unknown and φtable is known. We name the tasks Laptop
Missing, Table Missing, and Proxemics Missing, respectively.

Manipulated Variables. We manipulate the learning
method with 2 levels: FERL and an adapted Maximum
Entropy Inverse Reinforcement Learning (ME-IRL) baseline¶

(Finn et al. 2016; Wulfmeier et al. 2016) learning a deep
reward function from demonstrations. We model the ME-IRL
reward function rω as a neural network with 2 layers, 128
units each. For a fair comparison, we gave rω access to the
known features: once the 27D Euclidean input is mapped to a
neuron, a last layer combines it with the known feature vector.

Also for a fair comparison, we took great care to collect
a set of demonstrations for ME-IRL designed to be as
informative as possible: we chose diverse start and goal
configurations for the demonstrations, and focused some
of them on the unknown feature and some on learning a
combination between features (see App. B.2). Moreover,
FERL and ME-IRL rely on different input types: FERL on
feature traces ξ and pushes aH and ME-IRL on a set of
near-optimal demonstrations D∗. To level the amount of data
each method has access to, we collected the traces Ξ and
demonstrations D∗ such that ME-IRL has more data points:
the average number of states per demonstration/trace were 61
and 31, respectively.

Following Eq. (13), the gradient of the ME-IRL objective
with respect to the reward parameters ω can be estimated
by: ∇ωL≈ 1

|D∗|
∑
τ∈D∗∇ωRω(τ)− 1

|Dω|
∑
τ∈Dω∇ωRω(τ)

(Wulfmeier et al. 2016; Finn et al. 2016). Here, Rω(τ)=∑
s∈τrω(s) is the parametrized reward, D∗ the expert

demonstrations, and Dω are trajectory samples from the rω
induced near optimal policy. We use TrajOpt (Schulman et al.

1 2 3 4 5 6 7 8 9 10
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

to
G

T
R

ew
ar

d

FERL Laptop Missing
ME-IRL Laptop Missing

FERL Table Missing
ME-IRL Table Missing

FERL Proxemics Missing
ME-IRL Proxemics Missing

Figure 9. MSE of online FERL and ME-IRL to GT reward
across all three tasks. FERL learns rewards that better
generalize to the state space.

2013) to obtain the samples Dω (see App. C.4 for details).
For practical considerations and implementation details of the
online version of FERL we used, see App. C.2.

Dependent Measures. We compare the two reward
learning methods across three metrics commonly used in
the IRL literature (Choi and Kim 2011): 1) Reward Accuracy:
how close to GT the learned reward is, 2) Behavior Accuracy:
how well do the behaviors induced by the learned rewards
compare to the GT optimal behavior, measured by evaluating
the induced trajectories on GT reward, and 3) Test Probability:
how likely trajectories generated by the GT reward are under
the learned reward models.

For Reward Accuracy, note that any affine transformation of
a reward function would result in the same induced behaviors,
so simply measuring the MSE between the learner’s reward
and the GT reward may not be informative. As such, we
make reward functions given by different methods comparable
by computing each learner’s reward values on STest and
normalizing the resulting set of rewards to be in [0, 1].
This allows us to compute the MSE on STest between each
method and the GT. Similarly to Sec. 6.1, we report this
metric by varying the number of traces / demonstrations
each learner gets access to. For Behavior Accuracy and
Test Probability, we train FERL and ME-IRL with a set of
10 traces / demonstrations. For Behavior Accuracy, we use
TrajOpt (Schulman et al. 2013) to produce optimal trajectories
for 100 randomly selected start-goal pairs under the learned
rewards. We evaluate the trajectories with the GT reward rtrue
and divide by the reward of the GT induced trajectory for
easy relative comparison. For Test Probability, we generate
100 optimal trajectories using the GT reward, then evaluate
their likelihood under the Boltzmann model in Eq. (10) with
each learned reward. To approximate the intractable integral
in Eq. (10), we sample|| sets of 100 trajectories for every start-
goal pair corresponding to the optimal trajectories. For a fair

¶We chose ME-IRL as it is the state-of-the-art method for learning rewards
and does not rely on base feature engineering, as explained in Section 2. We
also tried a linear variant of ME-IRL optimizing the reward parameters on
top of random features modeled as neural networks. However, we found the
performance of this alternate baseline to be consistently inferior to that of the
deep ME-IRL (see App. D.2), so we only compare against the deep variant.
‖To obtain dynamically feasible trajectories, we sampled random objectives
given by linear combinations of various features, and optimized them with
TrajOpt. While this sampling strategy cannot be justified theoretically, it
works well in practice: the resulting optimized trajectories are a heuristic for
sampling diverse and interesting trajectories in the environment.

Prepared using sagej.cls

Bobu et. al. 13

Laptop Missing Table Missing Proxemics Missing
0.0

0.5

1.0

1.5

2.0

R
ew

ar
d

R
at

io
to

G
T

GT
ME-IRL
FERL

Figure 10. Induced trajectories’ reward ratio for the two methods
compared to GT. ME-IRL struggles to generalize across all tasks.

comparison, we use the normalized rewards once again, and
fit the maximum likelihood coefficient β̂ for each model.

Hypotheses.
H6: Online FERL learns rewards that better generalize to the
state space than ME-IRL.
H7: Online FERL performance is less input-sensitive than
ME-IRL’s.

7.1.2 Qualitative Comparison. In Fig. 8, we show the
learned FERL and ME-IRL rewards as well as the GT for
all three tasks evaluated at the test points. As we can see, by
first learning the missing feature and then the reward on the
extended feature vector, FERL is able to learn a fine-grained
reward structure closely resembling the GT. Meanwhile,
ME-IRL learns some structure capturing where the laptop
or the human is, but not enough to result in a good trade-off
between the active features.

7.1.3 Quantitative Analysis. To compare Reward Accuracy,
we show in Fig. 9 the MSE mean and standard error across 10
seeds, with increasing training data. We visualize results from
all 3 tasks, with FERL in orange and ME-IRL in gray. FERL
is closer to GT than ME-IRL no matter the amount of data,
supporting H6. To test this, we ran an ANOVA with learning
method as the factor, and with the task and data amount as
covariates, and found a significant main effect (F(1, 595) =
335.5253, p < .0001).

Additionally, the consistently decreasing MSE in Fig. 9
for FERL suggests that our method gets better with more
data; in contrast, the same trend is inexistent with ME-IRL.
Supporting H7, the high standard error that ME-IRL displays
implies that it is highly sensitive to the demonstrations
provided and the learned reward likely overfits to the expert
demonstrations. We ran an ANOVA with standard error as
the dependent measure, focusing on the N = 10 trials which
provide the maximum data to each method, with the learning
method as the factor and the task as a covariate. We found that
the learning method has a significant effect on the standard
error (F(1, 4) = 12.1027, p = .0254). With even more data,
this shortcoming of IRL might disappear; however, this would
pose an additional burden on the human, which our method
successfully alleviates.

We also looked at Behavior Accuracy for the two methods.
Fig. 10 illustrates the reward ratios to GT for all three tasks.
The GT ratio is 1 by default, and the closer to 1 the ratios are,
the better the performance because all rewards are negative.

Laptop Missing Table Missing Proxemics Missing
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

Pr
ob

ab
ili

ty

ME-IRL
FERL

Figure 11. Probability assigned by the two methods to a set of
optimal trajectories under the Boltzmann assumption. The
trajectories are more likely under FERL than ME-IRL, suggesting
FERL is the more accurate reward model.

The figure further supports H6, showing that FERL rewards
produce trajectories that are preferred under the GT reward
over ME-IRL reward trajectories. An ANOVA using the task
as a covariate reveals a significant main effect for the learning
method (F(1, 596) = 14.9816, p = .0001).

Lastly, we compare how likely a test set of trajectories
given by optimizing the GT reward is under the two models. A
more accurate reward model should give higher probabilities
to the demonstrated trajectories under the Boltzmann noisily-
rational assumption in Eq. 10. Fig. 11 illustrates that FERL
does indeed assign higher likelihood to the test trajectories
than ME-IRL, which is consistent with H6.

7.1.4 Summary. The rewards learned with FERL qualita-
tively capture more structure than ME-IRL ones, but they also
quantitatively get closer to the GT. Using FERL features – at
least when the robot is missing one feature – seems to induce
useful structure in the reward learning process that guides the
robot to better capture the person’s preferences. These results
hold when the person teaching the missing feature is an expert
user; we next look at the case where a novice interacts with
the robot instead.

7.2 Non-expert Users
The objective results in Sec. 6.2 show that while users’
performance degrades from expert performance, they are still
able to teach features with a lot of signal. We now want to test
how important the user-expert feature quality gap is when it
comes to using these features for online reward learning.

7.2.1 Experimental Design. For this experiment, we had a
similar setup to the one in Sec. 7.1, only that we performed
reward learning with FERL using the user-taught simulation
features from the user study. We wanted to see if the divide-
and-conquer approach employed by FERL results in better
rewards than ME-IRL even when using noisy simulation data.

Manipulated Variables. We manipulate the learning
method, FERL or ME-IRL, just like in Sec. 7.1. Because
corrections and demonstrations would be very difficult in
simulation, we use for ME-IRL the expert data from the
physical robot. For FERL, we use the user data from the
simulation, and the expert corrections that teach the robot
how to combine the learned feature with the known ones.

Prepared using sagej.cls

14 Journal Title XX(X)

Laptop Missing Table Missing Proxemics Missing0.00

0.02

0.04

0.06

0.08

0.10

0.12
M

SE
to

G
T

R
ew

ar
d

ME-IRL Expert (Physical)
FERL Expert (Sim)
FERL User (Sim)

Figure 12. MSE to GT reward for the three tasks, comparing
ME-IRL from expert physical demonstrations (gray) to online
FERL from expert (orange) and non-expert (yellow) features
learned in simulation and combined via corrections.

Note that this gives ME-IRL an advantage, since its data
is both generated by an expert, and on the physical robot.
Nonetheless, we hypothesize that the advantage of the divide-
and-conquer approach is stronger.

Dependent Measures. We use the same objective metric
as Reward Accuracy in the expert comparison in Sec. 7.1: the
learned reward MSE to the GT reward on STest.

Hypothesis.
H8: Online FERL learns more generalizable rewards than

ME-IRL even when using features learned from data provided
by non-experts in simulation.

7.2.2 Analysis. Fig. 12 illustrates our findings for the
reward comparison. In the figure, we added FERL with
expert-taught simulation features for reference: we randomly
subsampled sets of 10 from 20 expert traces collected by the
authors, and trained 12 expert features for each of our 3 task
features. We see that, even though ME-IRL was given the
advantage of using physical expert demonstrations, it still
severely underperforms when compared to FERL with both
expert and user features learned in simulation. This finding
is crucial because it underlines the power of our divide-and-
conquer approach in online reward learning: even when given
imperfect features, the learned reward is superior to trying to
learn everything implicitly from demonstrations.

We verified the significance of this result with an ANOVA
with the learning method as a factor and the task as a covariate.
We found a significant main effect for the learning method
(F(1, 62) = 41.2477, p < .0001), supporting our H8.

7.2.3 Summary. Despite the degradation in feature quality
we see in user features when compared to expert ones, we find
that the structure they do maintain is advantageous in online
reward learning. This suggests that the online instantiation
of FERL can be used even by non-experts to better teach the
robot their preferences.

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Low

High
RewardME-IRLFERLGround Truth

Figure 13. Visual comparison of the ground truth, offline FERL,
and ME-IRL rewards for One Feature (top), Two Features
(middle) and Three Features (bottom).

8 Experiments: Offline FERL
In the online reward learning setting, the robot was already
equipped with a starting feature set, and we tested how
learning missing features affects the reward. We now look at
the scenario where the robot’s reward must be programmed
entirely from scratch, teaching each feature separately before
combining them into a reward via demonstrations.

8.1 Expert Users
We have argued that learned features can induce useful
structure that speeds up reward learning. We test how the
reward is affected when the entire structure is built up from
the expert features taught from real robot data in Sec. 6.1.

8.1.1 Experimental Design. We run experiments on the
robot arm in three settings of increasing complexity: in the
first, the true reward depends on a single feature, and every
subsequent task adds another feature to the reward. In task 1,
the true reward depends on only φtable. In task 2, we add the
φlaptop feature, and in task 3 the φproxemics feature. In both
tasks 2 and 3, the reward equally combines the two and
three features, respectively. Task 1 should be easy enough
for even an end-to-end IRL method to solve, especially since
it relies on the simplest feature that we have considered.
Meanwhile, tasks 2 and 3 require learning rewards that are
more structurally complex. We name the three tasks One
Feature, Two Features, and Three Features, respectively.

Manipulated Variables. We manipulated the learning
method with 2 levels: FERL and ME-IRL. While in Sec.
7 ME-IRL had access to the known features, this time the
reward network is a function mapping directly from the 27D
Euclidean input space only. For practical considerations and
implementation details of the offline version of FERL we
used, see App. C.3.

For a fair comparison, we once again took great care
in how we collected the demonstrations ME-IRL learns

Prepared using sagej.cls

Bobu et. al. 15

2 3 4 5 6 7 8 9 10
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10
M

SE
to

G
T

R
ew

ar
d

One Feature
FERL
MEIRL

4 6 8 10 12 14 16 18 20
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

to
G

T
R

ew
ar

d

Two Features
FERL
MEIRL

6 9 12 15 18 21 24 27 30
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

to
G

T
R

ew
ar

d

Three Features
FERL
MEIRL

Figure 14. MSE of offline FERL and ME-IRL to GT reward for One Feature (Left), Two Features (Middle), and Three Features
(Right). In most data regimes, FERL learns rewards that better generalize to the state space.

from. Just like before, we chose diverse start and goal
configurations, and focused some of the demonstrations
on each individual feature, and, when it applies, on each
combination of features (see App. B.2). Importantly, while
ME-IRL uses a set of near-optimal demonstrationsD∗, FERL
requires both demonstrations and feature traces ξ. To level
the amount of data each method has access to, we distributed
the demonstrations and traces FERL has access to such that
ME-IRL has more data points. The average number of states
per demonstration/trace were 64 and 31, respectively, so if we
keep the number of ME-IRL demonstrations and FERL traces
the same, FERL has a non-zero budget of demonstrations to
use for cases with more than one demonstration (N > 1).

Dependent Measures. We use the same objective metrics
as Reward Accuracy, Behavior Accuracy, and Test Probability
in Sec. 7.1. For Reward Accuracy, we vary the number
N of traces / demonstrations each learner gets but skip
N = 1 because FERL would have an unfair advantage in the
amount of data given. We give ME-IRL up to 10, 20, and 30
demonstrations for the three tasks, respectively. Meanwhile,
we give FERL up to 10 traces for each feature, and 1, 2,
and 3 demonstrations for each task, respectively. Overall,
FERL would use up to 10 traces and one demonstration, up
to 20 traces and 2 demonstrations, and up to 30 traces and 3
demonstrations, while ME-IRL would be given 10, 20, and
30 demonstrations for each task, respectively. For Behavior
Accuracy and Test Probability, we train FERL with 10 traces
per feature and 1, 2, or 3 demonstrations, and ME-IRL with
10, 20, and 30 demonstrations, respectively. Just like in Sec.
7.1, for Behavior Accuracy we produce optimal trajectories
for 100 randomly selected start-goal pairs under the learned
rewards and evaluate them under the GT reward. Meanwhile,
for Test Probability, we generate 100 optimal trajectories
using the GT reward, then evaluate their likelihood under the
learned models.

Hypothesis.
H9: Offline FERL learns rewards that better generalize to the
state space than ME-IRL.

8.1.2 Qualitative Comparison. In Fig. 13, we show the
learned FERL and ME-IRL rewards as well as the GT for all
three tasks evaluated at the test points. The figure illustrates
that by first learning each feature separately and then the
reward that combines them, FERL is able to learn a fine-
grained reward structure closely resembling the GT. For
the easiest task, One Feature, ME-IRL does recover the GT
appearance, but this is unsurprising since the table feature is

very simple. For the other more complex two tasks, just like
in the online case, ME-IRL learns some structure capturing
where the laptop or the human is, but not enough to result in
a good trade-off between the features.

8.1.3 Quantitative Analysis. To compare Reward Accuracy,
we show in Fig. 14 the MSE mean and standard error across
10 seeds, with increasing training data. We visualize results
from all 3 tasks side by side, with FERL in orange and
ME-IRL in gray. For One Feature, as expected, ME-IRL does
eventually learn a good reward with enough data. However,
for the other more complex tasks that combine multiple
features, ME-IRL underperforms when compared to our
method. Overall, across the tasks, FERL is closer to GT than
ME-IRL no matter the amount of data, supporting H9. To test
this, we ran an ANOVA with learning method as the factor,
and with the task and data amount as covariates, and found a
significant main effect (F(1, 535) = 148.8431, p < .0001).

For comparing Behavior Accuracy, Fig. 15 illustrates the
reward ratios to GT for all three tasks. When the reward
consists of a single very simple feature, ME-IRL performs just
as well as our method. However, when the reward structure
more complexly combines multiple features, ME-IRL does
not produce as good trajectories under the GT reward as
FERL, supporting H8. We ran an ANOVA using the learning
method as a factor and the task as a covariate and did not find
a significant main effect, probably due to the One Feature
results. To verify this theory, we re-ran the ANOVA using
only the data from the more complex Two Features and
Three Features tasks, and did, in fact, find a significant main
effect (F(1, 397) = 5.7489, p = .0097). Results with the Test
Probability metric paint a similar picture. Fig. 16 shows
that for the easy One Feature case, both methods perform
comparably, but when the reward is more complex (Two
Features and Three Features), FERL outperforms ME-IRL
and assigns higher probability to the test trajectories.

8.1.4 Summary. The results in this section suggest that
while ME-IRL is capable of recovering very simple reward
structures, it does not perform as well as using FERL features
for complex rewards. This observation applies when the
features are taught by experts, so we now test what happens
if we instead use non-expert user features.

8.2 Non-expert Users
In Sec. 7.2, we saw that user-taught FERL features have
enough structure to help the robot recover the human’s
preferences in online reward setting where the original feature

Prepared using sagej.cls

16 Journal Title XX(X)

One Feature Two Features Three Features
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
R

ew
ar

d
R

at
io

to
G

T
GT
MEIRL
FERL

Figure 15. Induced trajectories’ reward ratio for the two methods
compared to GT. While ME-IRL generalizes for the single feature
task, it struggles with the more complex multiple feature tasks.

set is incomplete. However, there we only had one missing
feature. In this section, we test the more challenging scenario,
where we learn a reward from scratch using the noisy user
features learned in simulation.

8.2.1 Experimental Design. For this experiment, we had a
similar setup as in Sec. 7.2 – using the user-taught simulation
features for learning the reward – only this time we tested the
offline instantiation of FERL. Given that now we combine
multiple noisy features together into a reward, we wanted to
see how our divide-and-conquer approach fares against the
ME-IRL baseline.

Manipulated Variables. We manipulate the learning
method, FERL or ME-IRL, just like in Sec. 8.1. Like in Sec.
7.2, we use demonstrations collected from the expert on the
physical robot for ME-IRL. For FERL, we use the user data
from the simulation, and the expert demonstrations that teach
the robot how to combine the learned feature into a reward.
Note that this gives ME-IRL an advantage, since all its data
is both generated by an expert, and on the physical robot.

Dependent Measures. We use the same objective metric
as Reward Accuracy in the expert comparison in Sec. 8.1: the
learned reward MSE to the GT reward on STest.

Hypotheses.
H10: Offline FERL learns more generalizable rewards than
ME-IRL even when using features learned from data provided
by non-experts in simulation.

8.2.2 Analysis. Fig. 17 illustrates our findings for the
reward comparison. We also added the offline FERL reward
using expert-taught simulation features for reference, where
we randomly subsampled sets of 10 traces and trained 12
expert features for each of the three features. This time,
we find that the user features are noisy enough that, when
combined into a reward, they do not reliably provide an
advantage over ME-IRL. This could be attributed to the
difficulty of teaching features in a simulator, especially given
that there is no easy way to approximate distances and traces
in 3D space with a 2D interface are hard. We verified this
result with an ANOVA with the learning method as a factor
and the task as a covariate, and, as expected, we found no
significant main effect.

One Feature Two Features Three Features
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

Pr
ob

ab
ili

ty

ME-IRL
FERL

Figure 16. Probability assigned by the two methods to a set of
optimal trajectories under the Boltzmann assumption. For the
more complex multiple feature tasks, the trajectories are more
likely under FERL than ME-IRL.

One Feature Two Features Three Features
0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

to
G

T
R

ew
ar

d

MEIRL (Physical)
FERL Expert (Sim)
FERL User (Sim)

Figure 17. MSE to GT reward for the three tasks, comparing
ME-IRL from expert physical demonstrations (gray) to offline
FERL from expert (orange) and non-expert (yellow) features
learned in simulation and combined via corrections.

8.2.3 Summary. Previously, we have seen how structure
can indeed help reward learning generalizability and sample
efficiency; but we now see that the wrong – or very noisy –
structure obtained from traces from simulation may diminish
the benefits that our divide-and-conquer approach promises.
However, we suggest taking this result with a grain of salt,
since ME-IRL had the advantage of all-expert, all-physical
data, whereas our method was limited to data collected in
simulation from novice users. While not possible during the
pandemic, we are optimistic that with physical demonstrations
the benefits would be more prominent.

9 Discussion
Learning reward functions is a popular way to help robots
generate behaviors that adapt to new situations or human
preferences. In this work, we propose that robots can learn
more generalizable rewards by using a divide-and-conquer
approach, focusing on learning features separately from
learning how to combine them. We introduced feature traces
as a novel type of human input that allows for intuitive
teaching of non-linear features from high-dimensional state
spaces. We then presented two instantiations of our FERL

Prepared using sagej.cls

Bobu et. al. 17

algorithm: one that enables expanding the robot’s feature set
in online reward learning situations, and one that lets the
user sequentially teach every feature and then combine them
into a reward. In extensive experiments with a real robot
arm and a user study in simulation, we showed that online
FERL outperforms deep reward learning from demonstrations
(ME-IRL) in data-efficiency and generalization. Offline FERL
similarly beats ME-IRL when the features used are of high
enough quality, but the results are less conclusive when using
very noisy features.

Implications for Online Reward Learning. Because they
have to perform updates in real time from very little input,
online reward learning methods represent the reward as a
linear function of a small set of hand-engineered features. As
discussed, exhaustively choosing such a set a priori puts too
much burden on system designers, and using an incomplete
set of features can lead to learning the wrong reward. Prior
work enabled robots to at least detect that its feature space is
insufficient to explain the human’s input (Bobu et al. 2018),
but then the robot’s only option was to either not update the
reward or completely stop task execution. Our online FERL
approach provides an alternative that allows people to teach
features when the robot detects it is missing something, and
then update the reward using the new feature set. Although in
this paper we presented experiments where the robot learns
rewards from corrections, our framework can conceivably be
adapted to any online reward learning method, provided there
is a way to detect the feature set is insufficient. Recent work on
confidence estimation from human demonstrations (Bobu et al.
2020) and teleoperation (Zurek et al. 2021) offers encouraging
pathways to adapting FERL to other online human-robot
collaborative settings.

Implications for Learning Complex Rewards from
Demonstrations. Reward learning from raw state space with
expressive function approximators is considered difficult
because there exists a large set of functions rθ(s) that could
explain the human input. For example, in the case of learning
from demonstrations, many functions rθ(s) induce policies
that match the demonstrations’ state expectation. The higher
dimensional the state s, the more human input is needed
to disambiguate between those functions sufficiently to find
a reward rθ that accurately captures human preferences.
Without that, the learned reward is unlikely to generalize to
states not seen during training and might simply replicate the
demonstrations’ state expectations. In this paper, we presented
evidence that offline FERL may provide an alternative to
better disambiguate the reward and improve generalization.

The reason our divide-and-conquer approach can help
relative to relying on demonstrations for everything is that
demonstrations aggregate a lot of information. First, by
learning features, we can isolate learning what matters from
learning how to trade off what matters into a single value (the
features vs. their combination) – in contrast, demonstrations
have to teach the robot about both at once. Second, feature
traces give information about states that are not on optimal
trajectories, be it states with high feature values that are
undesirable, or states with low feature values where other,
more important features have high values. Third, feature
traces are also structured by the monotonicity assumption:
they tell us relative feature values of the states along a trace,

whereas demonstrations only tell us about the aggregate
reward across a trajectory. Thus, by focusing on learning
features first before combining them into a reward, the robot
can incorporate all three benefits and ultimately improve
reward learning from demonstrations.

Limitations and Future Work. Our work is merely a step
towards understanding how explicitly focusing on learning
features can impact reward learning generalization and sample
complexity. While FERL enables robots to learn features
and induce structure in reward learning, there are several
limitations that may affect its usability.

Our user study provides evidence that non-expert users can,
in fact, use FERL to teach good features. However, due to
the current pandemic, we conducted the study in a simulated
environment instead of in person with the real robot, and
most of our users had technical background. It is unclear
how people without technical background would perform,
and especially how kinesthetically providing feature traces
(instead of clicking and dragging in a simulator) would affect
their perception of the protocol’s usability. Further, we only
tested whether users could teach features we tell them about,
so we still need to test whether users can teach features they
implicitly know about (as would happen when intervening to
correct the robot or designing a reward from scratch).

Even if people know the feature they want to teach, it might
be so abstract (e.g. comfort) that they would not know how to
teach it. Moreover, with the current feature learning protocol,
they might find it cumbersome to teach discontinuous features
like constraints. We could ease the human supervision burden
by developing an active learning approach where the robot
autonomously picks starting states most likely to result in
informative feature traces. For instance, the robot could fit
an ensemble of functions from traces online, and query for
new traces from states where the ensemble disagrees (Reddy
et al. 2020a). But for such complex features, it may be more
effective to investigate combining feature traces with other
types of structured human input.

The quality of the learned rewards depends directly on the
quality of the learned features. When the human provides
feature traces that lead to good features, many of our
experiments demonstrate that they induce structure in the
reward learning procedure that helps generalization and
sample complexity. However, if the robot learns features that
are too noisy or simply incorrect, that (wrong) structure may
impair performance. We saw an example of this when we
tried to utilize the user study features for reward learning.
In online FERL where a single feature was missing, the
structure captured by the (noisy) non-expert features was
still helpful in learning a better reward than the baseline.
However, when trying to combine multiple noisy features
in offline FERL, reward learning did not see a benefit. Future
work must investigate ways in which the robot can determine
whether to accept or reject the newly learned feature. One
idea is to use our current framework’s confidence estimation
capability in Sec. 5.2.2 to determine whether the learned
feature set explains the human’s reward input. Another idea
is to visualize either the feature function or examples of
behaviors induced by it, and let the person decide whether the
learned feature is acceptable.

Lastly, while we show that FERL works reliably in 27D,
more work is necessary to extend it to higher dimensional

Prepared using sagej.cls

18 Journal Title XX(X)

state spaces, like images. In our discussion in App. B.3, we
show how spurious correlations in large input spaces may
affect the quality of the learned features in low data regimes.
To counteract that, we could ask the person for more data,
but after a certain point this becomes too burdensome on the
user. Alternatively, approaches that encode these spaces to
lower dimensional representations or techniques from causal
learning, such as Invariant Risk Minimization (Arjovsky et al.
2019), could help tackle these challenges.

Acknowledgements

This research is supported by the Air Force Office of Scientific
Research (AFOSR), the Office of Naval Research (ONR-YIP), the
DARPA Assured Autonomy Grant, the CONIX Research Center, and
the German Academic Exchange Service (DAAD). We also thank
Rohin Shah for providing guidance and feedback on our work.

References

Abbeel P and Ng AY (2004) Apprenticeship learning via inverse
reinforcement learning. In: Machine Learning (ICML),
International Conference on. ACM.

Amodei D and Clark J (2016) Faulty reward functions
in the wild URL https://blog.openai.com/

faulty-reward-functions/.
Argall BD, Chernova S, Veloso M and Browning B (2009) A survey

of robot learning from demonstration. Robotics and autonomous
systems 57(5): 469–483.

Arjovsky M, Bottou L, Gulrajani I and Lopez-Paz D (2019) Invariant
risk minimization. ArXiv abs/1907.02893.

Bajcsy A, Losey DP, O’Malley MK and Dragan AD (2018) Learning
from physical human corrections, one feature at a time. In:
Proceedings of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’18. New York, NY, USA:
ACM. ISBN 978-1-4503-4953-6, pp. 141–149. DOI:10.
1145/3171221.3171267. URL http://doi.acm.org/10.

1145/3171221.3171267.
Bajcsy A, Losey DP, O’Malley MK and Dragan AD (2017) Learning

robot objectives from physical human interaction. In: Levine
S, Vanhoucke V and Goldberg K (eds.) Proceedings of the
1st Annual Conference on Robot Learning, Proceedings of
Machine Learning Research, volume 78. PMLR, pp. 217–
226. URL http://proceedings.mlr.press/v78/

bajcsy17a.html.
Baker C, B Tenenbaum J and R Saxe R (2007) Goal inference as

inverse planning. In: Proceedings of the 29th Annual Conference
of the Cognitive Science Society.

Bobu A, Bajcsy A, Fisac JF, Deglurkar S and Dragan AD (2020)
Quantifying hypothesis space misspecification in learning from
human–robot demonstrations and physical corrections. IEEE
Transactions on Robotics : 1–20.

Bobu A, Bajcsy A, Fisac JF and Dragan AD (2018) Learning under
misspecified objective spaces. In: Billard A, Dragan A, Peters
J and Morimoto J (eds.) Proceedings of The 2nd Conference
on Robot Learning, Proceedings of Machine Learning
Research, volume 87. PMLR, pp. 796–805. URL http:

//proceedings.mlr.press/v87/bobu18a.html.
Bobu A, Wiggert M, Tomlin C and Dragan AD (2021) Feature

expansive reward learning: Rethinking human input. In:
Proceedings of the 2021 ACM/IEEE International Conference

on Human-Robot Interaction, HRI ’21. New York, NY, USA:
Association for Computing Machinery. ISBN 9781450382892,
p. 216–224. DOI:10.1145/3434073.3444667. URL https:

//doi.org/10.1145/3434073.3444667.
Braziunas D and Boutilier C (2008) Elicitation of factored

utilities. AI Magazine 29(4): 79. DOI:10.1609/aimag.v29i4.
2203. URL https://ojs.aaai.org/index.php/

aimagazine/article/view/2203.
Brown D, Coleman R, Srinivasan R and Niekum S (2020) Safe

imitation learning via fast Bayesian reward inference from
preferences. In: III HD and Singh A (eds.) Proceedings
of the 37th International Conference on Machine Learning,
Proceedings of Machine Learning Research, volume 119.
PMLR, pp. 1165–1177. URL http://proceedings.mlr.

press/v119/brown20a.html.
Brown D, Goo W, Nagarajan P and Niekum S (2019) Extrapolating

beyond suboptimal demonstrations via inverse reinforcement
learning from observations. In: International Conference on
Machine Learning. PMLR, pp. 783–792.

Brown DS, Cui Y and Niekum S (2018) Risk-aware active inverse
reinforcement learning. In: Conference on Robot Learning.
PMLR, pp. 362–372.

Choi J and Kim KE (2011) Inverse reinforcement learning in
partially observable environments. Journal of Machine Learning
Research 12(Mar): 691–730.

Choi J and Kim KE (2013) Bayesian nonparametric feature
construction for inverse reinforcement learning. In: Twenty-
Third International Joint Conference on Artificial Intelligence.

Christiano PF, Leike J, Brown T, Martic M, Legg S and
Amodei D (2017) Deep reinforcement learning from
human preferences. In: Guyon I, Luxburg UV, Bengio
S, Wallach H, Fergus R, Vishwanathan S and Garnett
R (eds.) Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc. URL https:

//proceedings.neurips.cc/paper/2017/file/

d5e2c0adad503c91f91df240d0cd4e49-Paper.

pdf.
Coumans E and Bai Y (2016–2019) Pybullet, a python module for

physics simulation for games, robotics and machine learning.
http://pybullet.org.

Dragan AD, Muelling K, Bagnell JA and Srinivasa SS (2015)
Movement primitives via optimization. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA).
pp. 2339–2346. DOI:10.1109/ICRA.2015.7139510.

Finn C, Levine S and Abbeel P (2016) Guided cost learning: Deep
inverse optimal control via policy optimization. In: Proceedings
of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16.
JMLR.org, p. 49–58.

Fisac JF, Bajcsy A, Herbert SL, Fridovich-Keil D, Wang S, Tomlin
CJ and Dragan AD (2018) Probabilistically safe robot planning
with confidence-based human predictions. Robotics: Science
and Systems (RSS) .

Fridovich-Keil D, Bajcsy A, Fisac JF, Herbert SL, Wang S, Dragan
AD and Tomlin CJ (2019) Confidence-aware motion prediction
for real-time collision avoidance. International Journal of
Robotics Research .

Fu J, Luo K and Levine S (2018a) Learning robust rewards with
adverserial inverse reinforcement learning. In: International
Conference on Learning Representations. URL https://

Prepared using sagej.cls

https://blog.openai. com/faulty-reward-functions/
https://blog.openai. com/faulty-reward-functions/
http://doi.acm.org/10.1145/3171221.3171267
http://doi.acm.org/10.1145/3171221.3171267
http://proceedings.mlr.press/v78/bajcsy17a.html
http://proceedings.mlr.press/v78/bajcsy17a.html
http://proceedings.mlr.press/v87/bobu18a.html
http://proceedings.mlr.press/v87/bobu18a.html
https://doi.org/10.1145/3434073.3444667
https://doi.org/10.1145/3434073.3444667
https://ojs.aaai.org/index.php/aimagazine/article/view/2203
https://ojs.aaai.org/index.php/aimagazine/article/view/2203
http://proceedings.mlr.press/v119/brown20a.html
http://proceedings.mlr.press/v119/brown20a.html
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
http://pybullet.org
https://openreview.net/forum?id=rkHywl-A-

Bobu et. al. 19

openreview.net/forum?id=rkHywl-A-.
Fu J, Singh A, Ghosh D, Yang L and Levine S (2018b) Variational

inverse control with events: A general framework for data-driven
reward definition. arXiv preprint arXiv:1805.11686.

Hadfield-Menell D, Milli S, Abbeel P, Russell SJ and Dragan
A (2017) Inverse reward design. In: Guyon I, Luxburg
UV, Bengio S, Wallach H, Fergus R, Vishwanathan S and
Garnett R (eds.) Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc. URL https:

//proceedings.neurips.cc/paper/2017/file/

32fdab6559cdfa4f167f8c31b9199643-Paper.

pdf.
Hart SG and Staveland LE (1988) Development of nasa-tlx (task

load index): Results of empirical and theoretical research.
In: Hancock PA and Meshkati N (eds.) Human Mental
Workload, Advances in Psychology, volume 52. North-Holland,
pp. 139 – 183. DOI:https://doi.org/10.1016/S0166-4115(08)
62386-9. URL http://www.sciencedirect.com/

science/article/pii/S0166411508623869.
Haug L, Tschiatschek S and Singla A (2018) Teaching inverse

reinforcement learners via features and demonstrations. In:
Advances in Neural Information Processing Systems. pp. 8464–
8473.

Ibarz B, Leike J, Pohlen T, Irving G, Legg S and Amodei
D (2018) Reward learning from human preferences and
demonstrations in atari. In: Bengio S, Wallach H, Larochelle H,
Grauman K, Cesa-Bianchi N and Garnett R (eds.) Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., pp. 8011–8023. URL https:

//proceedings.neurips.cc/paper/2018/file/

8cbe9ce23f42628c98f80fa0fac8b19a-Paper.

pdf.
Jain A, Sharma S, Joachims T and Saxena A (2015) Learning

preferences for manipulation tasks from online coactive
feedback. The International Journal of Robotics Research
34(10): 1296–1313.

Javdani S, Admoni H, Pellegrinelli S, Srinivasa SS and Bagnell
JA (2018) Shared autonomy via hindsight optimization
for teleoperation and teaming. The International Journal
of Robotics Research 37(7): 717–742. DOI:10.1177/
0278364918776060. URL https://doi.org/10.1177/

0278364918776060.
Jaynes ET (1957) Information theory and statistical mechanics.

American Physical Society, pp. 620–630. DOI:10.1103/
PhysRev.106.620. URL https://link.aps.org/doi/

10.1103/PhysRev.106.620.
Levine S, Popovic Z and Koltun V (2010) Feature construction

for inverse reinforcement learning. In: Advances in Neural
Information Processing Systems. pp. 1342–1350.

Levine S, Popovic Z and Koltun V (2011) Nonlinear inverse
reinforcement learning with gaussian processes. In: Advances
in Neural Information Processing Systems. pp. 19–27.

Lopes M, Melo F and Montesano L (2009) Active learning for reward
estimation in inverse reinforcement learning. In: Joint European
Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, pp. 31–46.

Ng A and Russell S (2000) Algorithms for inverse reinforce-
ment learning. International Conference on Machine
Learning (ICML) 0: 663–670. DOI:10.2460/ajvr.67.2.323.
URL http://www-cs.stanford.edu/people/ang/

papers/icml00-irl.pdf.
Osa T, Pajarinen J, Neumann G, Bagnell JA, Abbeel P, Peters J

et al. (2018) An algorithmic perspective on imitation learning.
Foundations and Trends in Robotics 7(1-2): 1–179.

Ratliff N, Bradley DM, Chestnutt J and Bagnell JA (2007) Boosting
structured prediction for imitation learning. In: Advances in
Neural Information Processing Systems. pp. 1153–1160.

Ratliff ND, Bagnell JA and Zinkevich MA (2006) Maximum
margin planning. In: Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06. New York,
NY, USA: Association for Computing Machinery. ISBN
1595933832, p. 729–736. DOI:10.1145/1143844.1143936. URL
https://doi.org/10.1145/1143844.1143936.

Reddy S, Dragan A, Levine S, Legg S and Leike J (2020a) Learning
human objectives by evaluating hypothetical behavior. In:
ICML.

Reddy S, Dragan AD and Levine S (2020b) SQIL: imitation
learning via reinforcement learning with sparse rewards. In:
8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. URL https://openreview.net/

forum?id=S1xKd24twB.
Russell S and Norvig P (2002) Artificial intelligence: a modern

approach .
Sadigh D, Sastry SS, Seshia SA and Dragan A (2016) Information

gathering actions over human internal state. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 66–73. DOI:10.1109/IROS.2016.7759036.

Schulman J, Ho J, Lee AX, Awwal I, Bradlow H and Abbeel P
(2013) Finding locally optimal, collision-free trajectories with
sequential convex optimization. In: Robotics: science and
systems, volume 9. Citeseer, pp. 1–10.

Vapnik V (2013) The nature of statistical learning theory. Springer
science & business media.

Vernaza P and Bagnell D (2012) Efficient high dimensional
maximum entropy modeling via symmetric partition functions.
In: Advances in Neural Information Processing Systems. pp.
575–583.

Von Neumann J and Morgenstern O (1945) Theory of games and
economic behavior. Princeton University Press Princeton, NJ.

Wulfmeier M, Wang DZ and Posner I (2016) Watch this: Scalable
cost-function learning for path planning in urban environments.
In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 2089–2095.

Ziebart BD, Maas A, Bagnell JA and Dey AK (2008) Maximum
entropy inverse reinforcement learning. In: Proceedings of the
23rd National Conference on Artificial Intelligence - Volume 3,
AAAI’08. AAAI Press. ISBN 978-1-57735-368-3, pp. 1433–
1438. URL http://dl.acm.org/citation.cfm?id=

1620270.1620297.
Zurek M, Bobu A, Brown DS and Dragan AD (2021) Situational

confidence assistance for lifelong shared autonomy.

Prepared using sagej.cls

https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
http://www.sciencedirect.com/science/article/pii/S0166411508623869
http://www.sciencedirect.com/science/article/pii/S0166411508623869
https://proceedings.neurips.cc/paper/2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf
https://doi.org/10.1177/0278364918776060
https://doi.org/10.1177/0278364918776060
https://link.aps.org/doi/10.1103/PhysRev.106.620
https://link.aps.org/doi/10.1103/PhysRev.106.620
http://www-cs.stanford.edu/people/ang/papers/icml00-irl.pdf
http://www-cs.stanford.edu/people/ang/papers/icml00-irl.pdf
https://doi.org/10.1145/1143844.1143936
https://openreview.net/forum?id=S1xKd24twB
https://openreview.net/forum?id=S1xKd24twB
http://dl.acm.org/citation.cfm?id=1620270.1620297
http://dl.acm.org/citation.cfm?id=1620270.1620297

20 Journal Title XX(X)

A Method Details

A.1 Incorporating Relative Values in Training
Concretely, given start state s0, a relative value v0 acts
as a modifier for what φψ(s0) should be relative to φψ’s
minimum value. If we consider the maximum feature value
to be φmaxψ and the minimum one φminψ , we can define the
feature range φrangeψ = φmaxψ − φminψ . Then, v0 shifts the
desired feature value φψ(s0) in proportion to this range.
When comparing φψ(s0) to the maximum value φmaxψ , their
difference should be φmaxψ − φψ(s0) = (1− v0) ∗ φrangeψ .
For example, if v0 = 0.3, meaning the trace starts somewhere
with a feature value 30% higher than the minimum, their
difference is 70% of the feature range. If v0 is the default 1,
their difference becomes 0, meaning φψ(s0) is the maximum.

Similarly, a relative value vn would also shift the feature
value of an end state sn in proportion to φrangeψ . This
time, when comparing φψ(sn) to the minimum value φminψ ,
their difference will be φψ(sn)− φminψ = vn ∗ φrangeψ . For
example, if vn = 0.3, meaning the trace ends somewhere
with a feature value 30% higher than the minimum, their
difference is 30% of the feature range. If vn is the default 0,
their difference becomes 0, meaning φψ(sn) is the minimum.

To incorporate the relative values v0 and vn into the training
procedure, we have to use them to modify the feature values
that the predictor in Eq. (3) is applied to. Given start states s0

and s′0, instead of comparing φψ(s0) to φψ(s′0) directly, we
compare the altered feature values φψ(s0)′ = φψ(s0) + (1−
v0) ∗ φrangeψ and φψ(s′0)′ = φψ(s′0) + (1− v0) ∗ φrangeψ . As
such, the training loss uses P (φψ(s0)′ > φψ(s′0)′) as a
predictor. Similarly, given end states sn and s′n, instead
of comparing φψ(sn) to φψ(s′n) directly, we compare the
altered feature values φψ(sn)′ = φψ(sn)− vn ∗ φrangeψ and
φψ(s′n)′ = φψ(s′n)− vn ∗ φrangeψ . As such, the training loss
uses P (φψ(sn)′ > φψ(s′n)′) as a predictor.

B Experimental Details

B.1 Protocols for Feature Trace Collection
In this section, we present our protocol for collecting feature
traces for the six features discussed in Sec. 6.1. As we will
see, the traces collected from the human only noisily satisfy
the assumptions in Sec. 4.2. Nevertheless, as we showed in
Sec. 6.1, FERL is able to learn high quality feature functions.

For table, the person teaches that being close to the table,
anywhere on the xy plane, is desirable, whereas being far
away in height is undesirable. As such, in Fig. 2 on the left
traces traverse the space from up at a height, until reaching
the table. A few different starting configurations are helpful,
not necessarily to cover the whole state space, but rather to
have signal in the data: having the same trace 10 times would
not be different from having it once.

For laptop, as described in the text and shown in Fig. 2
on the right, the person starts in the middle of the laptop,
and moves away a distance equal to the bump radius desired.
Having traces from a few different directions and heights
helps learn a more distinct feature. For test laptop location,
the laptop’s location at test time is not seen during training.
Thus, the training traces should happen with various laptop

positions, also starting in the middle and moving away as
much distance as desired.

When teaching the robot to keep the cup upright (coffee),
the person starts their traces by placing the robot in a position
where the cup is upside-down, then moving the arm or rotating
the End-Effector (EE) such that it points upright. Doing this
for a few different start configurations helps. Fig. 18 (left)
shows example traces colored with the true feature values.

When learning proxemics, the goal is to keep the EE away
from the human, more so when moving in front of their face,
and less so when moving on their side. As such, when teaching
this feature, the person places the robot right in front of the
human, then moves it away until hitting the contour of some
desired imaginary ellipsis: moving further in front of the
human, and not as far to the sides, in a few directions. Fig.
18 (middle) shows example traces colored with the Ground
Truth (GT) feature values.

Lastly, for between objects there are a few types of traces,
all shown in Fig. 18 (right). First, to teach a high feature value
on top of the objects, some traces need to start on top of them
and move away radially. Next, the person has a few options:
1) record a few traces spanning the line between the objects,
at different heights, and labeling the start and the end the
same; 2) starting anywhere on the imaginary line between the
objects and moving perpendicularly away the desired distance,
and labeling the start; 3) starting on top of one of the objects,
moving towards the other then turning away in the direction
orthogonal to the line between the objects.

B.2 Protocols for Demonstration Collection
In an effort to make the ME-IRL comparison fair, we paid
careful attention to collecting informative demonstrations for
both reward learning settings in Sec. 7 and Sec. 8.

In the online setting, for each unknown feature, we recorded
a mix of 20 demonstrations about the unknown feature only
(with a focus on learning about it), the known feature only
(to learn a reward weight on it), and both of them (to learn a
reward weight combination on them). We chose diverse start
and goal configurations to trace the demonstrations.

For Laptop Missing, we had a mix of demonstrations that
start close to the table and focus on going around the laptop,
ones that are far away enough from the laptop such that
only staying close to the table matters, and ones where both
features are considered. Fig. 19 (left) shows examples of such
demonstrations: the two in the back start far away enough
from the laptop but at a high height, and the two in the front
start above the laptop at different heights.

For Table Missing, we collected a similar set of trajectories,
although we had more demonstrations attempting to stay close
to the table when the laptop was already far away. Fig. 19
(middle) shows a few examples: the two in the back start
far away from the laptop and only focus on staying close to
the table, a few more start at a high height but need to avoid
the laptop to reach the goal, and another two start above the
laptop and move away from it.

For Proxemics Missing, the most difficult one, some
demonstrations had to avoid the person slightly to their side,
while others needed to avoid the person more aggressively in
the front. We also varied the height and start-goal locations,
to ensure that we learned about each feature separately, as

Prepared using sagej.cls

Bobu et. al. 21

Figure 18. (Left) Feature traces for coffee. We show the xyz values of the x-axis base vector of the End-Effector (EE) orientation.
The traces start with the EE pointing downwards and move it upwards. (Middle) Feature traces for proxemics with the human at
xy = [−0.2,−0.5], with Ground Truth (GT) feature values projected on the xy-plane. Some traces are longer than others, to signal
that the human dislikes the EE being in front of them more than to the sides. (Right) Feature traces for between objects, with GT
feature values projected on the xy-plane. Notice a mix of traces teaching about the two objects and about the space between them.

Figure 19. A few representative demonstrations collected for Laptop Missing (left), Table Missing (middle), and Proxemics Missing
(right). The colors signify the true reward values in each task, where yellow is low and blue is high.

well as together. Fig. 19 (right) shows a few of the collected
demonstrations.

In the offline setting, we took a similar approach to
collecting demonstrations. For One Feature, we recorded 20
demonstrations starting far from the table and moving close
to it, making sure to vary the start and end configurations. For
Two Features, we collected 40 demonstrations (double the
amount for two features) with a similar protocol to the Laptop
Missing and Table Missing tasks in the online setting. Lastly,
for the Three Features task we obtained 60 demonstrations,
focusing on each feature separately, every pair of two, and the
full combination of three features.

B.3 Raw State Space Dimensionality
Throughout our experiments, we chose a 36D input space
made out of 27 Euclidean coordinates (xyz positions of all
robot joints and environment objects) and 9 entries in the
EE’s rotation matrix. We now explain how we chose this
raw state space, how spurious correlations across different
dimensions can reduce feature learning quality, and how this
adverse effect can be alleviated.

First, note that the robot’s 7 joint angles and the xyz
positions of the objects are the most succinct representation
of the state, because the positions and rotation matrices of
the joints can be determined from the angles via forward
kinematics. With enough data, the neural network should be
able to implicitly learn forward kinematics and the feature

function on top of it. However, we found that applying
forward kinematics a-priori and giving the network access to
the xyz positions and rotation matrices for each joint improve
both data efficiency and feature quality significantly. In its
most comprehensive setting, thus, the raw state space can
be 97D (7 angles, 21 xyz coordinates of the joints, 6 xyz
coordinates of the objects, and 63 entries in rotation matrices
of all joints).

Unfortunately, getting neural networks to generalize on
such high dimensional input spaces, especially with the
little data that we have access to, is very difficult. Due
to the redundancy of the information in the 97D state
space, the feature network φψ frequently picks up on
spurious correlations in the input space, which decreases the
generalization performance of the learned feature. In principle,
this issue could be resolved with more diverse and numerous
data. Since we want feature learning to be as effortless as
possible for the human, we instead opted for the reduced 36D
state space, focusing directly on the xyz positions and the EE
orientation.

Now, as noted in Sec. 6.1, the spurious correlations in the
36D space still made it difficult to train on both the position
and orientation subspaces. To better separate redundant
information, we devised a heuristic to automatically select
the appropriate subspace for a feature. For each subspace, the
algorithm first trains a separate network for 10 epochs on half
of the input traces and evaluates its generalization ability on

Prepared using sagej.cls

22 Journal Title XX(X)

2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

M
SE

no
rm

Table

2 3 4 5 6 7 8 9 10

Laptop

2 4 6 8 10 12 14 16 18 20

Test Laptop Location

2 3 4 5 6 7 8 9 10
Number of Feature Traces

0.0

0.5

1.0

M
SE

no
rm

Coffee

2 3 4 5 6 7 8 9 10
Number of Feature Traces

Proxemics

3 6 9 12 15 18 21 24 27 30
Number of Feature Traces

Between Objects

2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

M
SE

no
rm

Table

2 3 4 5 6 7 8 9 10

Laptop

2 4 6 8 10 12 14 16 18 20

Test Laptop Location

2 3 4 5 6 7 8 9 10
Number of Feature Traces

0.0

0.5

1.0

M
SE

no
rm

Coffee

2 3 4 5 6 7 8 9 10
Number of Feature Traces

Proxemics

3 6 9 12 15 18 21 24 27 30
Number of Feature Traces

Between Objects

Figure 20. Quantitative feature learning results for 36D without (above) and with (below) the subspace selection heuristic. For each
feature, we show the MSEnorm mean and standard error across 10 random seeds with an increasing number of traces (orange)
compared to random performance (gray).

the other half using the FERL loss. The subspace model with
the lower loss (better generalization) is then used for φψ and
trained on all traces. We found this heuristic to work fairly
well, selecting the right subspace on average in about 85% of
experiments.

To test how well it works in feature learning, we replicated
the experiment in Fig. 4 on the 36D state space, both with
and without the subspace selection heuristic. A first obvious
observation from this experiment is that performing feature
learning on separate subspaces (Fig. 4) results in lower MSEs
for all features and N number of traces than learning from
all 36 raw states (Fig. 20). Without the heuristic (Fig. 20
above), we notice that, while spurious correlations in the
raw state space are not problematic for some features (table,
coffee, laptop, between objects), they can reduce the quality
of the learned feature significantly for proxemics and test
laptop location. Adding our imperfect heuristic (Fig. 20
below) solves this issue, but increases the variance on each
error bar: while our heuristic can improve learning when it
successfully chooses the correct raw state subspace, feature
learning worsens when it chooses the wrong one.

In practice, when the subspace is not known, the robot
could either use this heuristic or it could ask the human
which subspace is relevant for teaching the desired feature.
While this is a first step towards dealing with correlated
input spaces, more work is needed to find more reliable
solutions. A better alternative to our heuristic could be

found in methods for causal learning, such as Invariant
Risk Minimization (Arjovsky et al. 2019). We defer such
explorations to future work.

B.4 User Study Instructions
The familiarization phase of the user study is crucial
for making sure our participants are equipped to provide
pedagogic feature traces. To properly train our participants,
we provided them with an instruction video and a user
manual prior to the study. The manual outlined the task
they were going to be trained on (human), how features are
visualized in the study, how to utilize the simulator interface,
how to give feature traces in practice, and provided visual
examples of traces that lead to high quality and low quality
teaching. The user video essentially followed the outline of
the manual, but we found that it provided a more practical
illustration of the interface and the teaching procedure. If
interested in the instruction video, see https://youtu.
be/y36hhb9DI24.

During the study, the familiarization phase was 10 minutes
long and it gave participants the opportunity to try out the
instructions from the manual in practice. First, a window
appears visualizing the feature on 10,000 states sampled in
the reachable set of the robot. We explain verbally what
the feature represents and how that definition ties into
the 3D visualization. This step was crucial to ensure that
all participants have a standardized understanding on the

Prepared using sagej.cls

https://youtu.be/y36hhb9DI24
https://youtu.be/y36hhb9DI24

Bobu et. al. 23

features they teach. After closing this window, the simulator
interface opens up for training the feature. Because this was
a familiarization phase, we guided the participants through
the steps, answered questions about the simulator interface,
and explained how to give diverse and pedagogic feature
traces. Once the algorithm trained the human feature, the 3D
visualization of the learned feature along the given traces
appeared. We walked the participants through what went right
and wrong in their teaching, and explained how they could
have improved their traces. We offered them the opportunity
to try again, but all users chose to begin the study. Once the
second phase of the study began, we offered participants no
feedback on their teaching.

C Implementation Details
We report details of our training procedures, as well as any
hyperparameters used. We tried a few different settings but
no extensive hyperparameter tuning was performed. Here we
present the settings that worked best for each method. The
code can be found at https://github.com/andreea7b/FERL.

C.1 Feature Learning Training Details
The feature function φψ(s) is approximated by a 2 layer,
64 hidden units neural network. We used a leaky ReLu
non-linearity for all but the output layer, for which we
used the softplus non-linearity. We normalized the output
of φψ(s) every epoch by keeping track of the maximum
and minimum output logit over the entire training data.
Following the description in Sec. 4.2, the full dataset consists
of |T | =

∑N
i=1

(
(ni+1)

2

)
+ 2
(
N
2

)
tuples, where the first part

is all tuples encoding monotonicity and the second part is
all tuples encouraging indistinguishable feature values at the
starts and ends of traces. Note that

∑N
i=1

(
(ni+1)

2

)
>> 2

(
N
2

)
,

hence in the dataset there are significantly fewer tuples of the
latter than the former type. This imbalance can lead to the
training converging to local optima where the start and end
values of traces are significantly different across traces. We
addressed this by using data augmentation on the equivalence
tuples (adding each tuple 5 times) and weighing the loss
Lequiv by a factor of 10, i.e. we picked λ = 10 in Eq. (8). We
optimized our final loss function using Adam for K = 100
epochs with a learning rate and weight decay of 0.001, and a
batch-size of 32 tuples over all tuples.

C.2 Online FERL Details
In the Online FERL implementation of Alg. 3, the robot uses
TrajOpt (Schulman et al. 2013) to plan a path from the start
to the goal configuration using the initial parameters θ, then
starts tracking it. When a person applies a correction, the
robot records the instantaneous deviation at 100Hz frequency
until the interaction concludes. Then, the robot uses the first
of these deviations to estimate the confidence β̂ in its ability
to explain the push. If the robot needs to learn a new feature,
i.e. β̂ < ε, it pauses trajectory execution. We used ε = 0.1 but
we did not perform extensive parameter tuning.

After potentially learning the feature using Alg. 1, the robot
uses its recorded sequence of instantaneous deviations to
update θ and replan τ . If the robot did learn a new feature,
by now its configuration has changed as a result of collecting

-1

-0.5

0

0.5

+/- 1

Between Objects 27D Between Objects 9D

-1 -0.5 0 0.5 1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 21. The between objects feature. (Left) Using a 27D
highly correlated raw state space (xyz positions of all robot joints
and objects), the learned feature (Down) does not capture the
fine-grained structure of the ground truth (Up). (Right) When
using only 9D (xyz positions of the EE and objects), the quality
of the learned feature improves.

feature traces, so we place it at the last recorded configuration
before feature learning happened, then resume new trajectory
execution. More details on estimating β̂, deforming the
trajectory τ by the correction, and parameters for updating θ
can be found in App. A of Bobu et al. (2020).

C.3 Offline FERL Details

We optimize the loss in Alg. 2 with stochastic gradient descent
using a learning rate of 1.0 and K = 50 iterations. At each
iteration we have to generate a set of near optimal trajectories
Dθ for the current reward. To do so, we take the start and goal
pairs of the demonstrations and use TrajOpt (Schulman et al.
2013) to generate an optimal trajectory for each start-goal
pair, hence |D∗| = |Dθ|. At every iteration, we estimate the
gradient using the full batch of |D∗| demonstration tuples.

C.4 ME-IRL Training Details

We approximate the reward rω(s) by a 2 layer, 128 hidden
units neural network, with ReLu non-linearities. In the online
reward learning experiments in Sec. 7.1, we also add the
known features to the output of this network before linearly
mapping them to rω(s) with a softplus non-linearity. While
D∗ is given, at each iteration we have to generate a set of near
optimal trajectories Dω for the current reward rω(s). To do
so, we take the start and goal pairs of the demonstrations and
use TrajOpt (Schulman et al. 2013) to generate an optimal
trajectory for each start-goal pair, hence |D∗| = |Dω|. At
each of the 50 iterations, we go through all start-goal pairs
with one batch consisting of the D∗ and Dω trajectories of
one randomly selected start-goal pair from which we estimate
the gradient as detailed in Sec. 7.1. We optimize the loss with
Adam using a learning rate and weight decay of 0.001.

Prepared using sagej.cls

https://github.com/andreea7b/FERL

24 Journal Title XX(X)

1 φrand 2 φrand 3 φrand 5 φrand 10 φrand ME-IRL
Method

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

to
G

T
R

ew
ar

d
One Feature

1 φrand 2 φrand 3 φrand 5 φrand 10 φrand ME-IRL
Method

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

to
G

T
R

ew
ar

d

Two Features

1 φrand 2 φrand 3 φrand 5 φrand 10 φrand ME-IRL
Method

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

to
G

T
R

ew
ar

d

Three Features

Figure 22. MSE of shallow ME-IRL with 1, 2, 3, 5, and 10 random features (gray) and deep ME-IRL (blue) to GT reward for One
Feature (Left), Two Features (Middle), and Three Features (Right). The deep ME-IRL variant outperforms the shallow one.

D Additional Results

D.1 Between Objects with 9D State Space
In Fig. 3 we saw that for between features, while FERL
learned the approximate location of the objects to be avoided,
it could not learn the more fine-grained structure of the
ground truth feature. This could be an artefact of the spurious
correlations in the high dimensional state space. To analyze
this result, we trained a network with only the dimensions
necessary for learning this feature: the xyz positions of the
EE and of the two objects. The result in Fig. 21 illustrates that,
in fact, our method is capable of capturing the fine-grained
structure of the ground truth; however, more dimensions in the
state space induce more spurious correlations that decrease
the quality of the features learned.

D.2 Baseline Comparison
Throughout our reward learning experiments in Secs. 7 and
8, we compare FERL to a deep implementation of ME-IRL.
Here, we investigate using a shallow variant as a baseline
instead, where the reward is modeled as a linear combination
of random features φrand. We model each random feature as
frozen randomly initialized neural networks with 2 layers and
256 units. This comparison should tell us whether using a
deep architecture for reward learning provides an advantage
when compared to simply learning rewards on top of random
transformations of the input space.

For this experiment, we looked at three tasks where the
GT reward is increasingly complex in the number of features:
One Feature, Two Features, and Three Features from Sec. 8.
We compare deep ME-IRL to a shallow implementation that
has access to 1, 2, 3, 5, or 10 random features in the linear
layer. We use as a metric the same Reward Accuracy metric
as in Secs. 7 and 8, which computes the MSE between the
normalized learned rewards and the GT.

Fig. 22 illustrates the differences between the 5 shallow
variants (gray) and the deep ME-IRL (blue). For One Feature,
the easiest case where the reward relies only on the table
feature, we see that increasing the number of random features
does improve the performance, but never beyond that of
deep ME-IRL. The same trend disappears in the other, more
complex, two cases. Overall, the deep variant consistently
outperforms shallow ME-IRL with any of the tested number
of random features, so we chose deep ME-IRL as the
representative baseline in our main experiments.

Prepared using sagej.cls

	1 Introduction
	2 Related Work
	2.1 Feature Representations in Reward Learning
	2.2 Learning Features

	3 Problem Formulation
	4 Algorithmic Approach: Feature Learning
	4.1 Feature Traces
	4.2 Learning a Feature Function
	4.2.1 Monotonicity Along Feature Traces.
	4.2.2 Start/End Feature Value Equivalence.
	4.2.3 Incorporating Relative Values.

	5 Algorithmic Approach: Reward Learning
	5.1 Offline FERL
	5.1.1 Creating the Feature Set.
	5.1.2 Offline Reward Learning.

	5.2 Online FERL
	5.2.1 Online Reward Update.
	5.2.2 Confidence Estimation.

	6 Experiments: Learning Features
	6.1 Expert Users
	6.1.1 Experimental Design.
	6.1.2 Qualitative Results.
	6.1.3 Quantitative Analysis.
	6.1.4 Summary.

	6.2 User Study
	6.2.1 Experimental Design.
	6.2.2 Analysis
	6.2.3 Summary.

	7 Experiments: Online FERL
	7.1 Expert Users
	7.1.1 Experimental Design.
	7.1.2 Qualitative Comparison.
	7.1.3 Quantitative Analysis.
	7.1.4 Summary.

	7.2 Non-expert Users
	7.2.1 Experimental Design.
	7.2.2 Analysis.
	7.2.3 Summary.

	8 Experiments: Offline FERL
	8.1 Expert Users
	8.1.1 Experimental Design.
	8.1.2 Qualitative Comparison.
	8.1.3 Quantitative Analysis.
	8.1.4 Summary.

	8.2 Non-expert Users
	8.2.1 Experimental Design.
	8.2.2 Analysis.
	8.2.3 Summary.

	9 Discussion
	A Method Details
	A.1 Incorporating Relative Values in Training

	B Experimental Details
	B.1 Protocols for Feature Trace Collection
	B.2 Protocols for Demonstration Collection
	B.3 Raw State Space Dimensionality
	B.4 User Study Instructions

	C Implementation Details
	C.1 Feature Learning Training Details
	C.2 Online FERL Details
	C.3 Offline FERL Details
	C.4 ME-IRL Training Details

	D Additional Results
	D.1 Between Objects with 9D State Space
	D.2 Baseline Comparison

